The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Negative control contributes to an extensive program of meiotic splicing in fission yeast.

Despite a high frequency of introns in the fission yeast Schizosaccharomyces pombe, regulated splicing is virtually unknown. We present evidence that splicing constitutes a major mechanism for controlling gene expression during meiosis, as 12 of 96 transcripts tested, which encode known components as well as previously uncharacterized ORFs, retain introns until specific times during differentiation. The meiotically spliced pre-mRNAs include two cyclins, rem1 (discovered by Ayte and Nurse) and crs1. Consistent with the use of regulated splicing to block protein production, expression of crs1 in vegetative cells is toxic. Analyses of gene chimeras indicate that splicing is prevented in mitotically growing cells via inhibition, in contrast to the positive control of meiotic splicing in budding yeast. Most strikingly, splicing of crs1 and rem1 is regulated by sequences located outside the coding regions, far from the target introns, a phenomenon previously observed only in metazoans.[1]


  1. Negative control contributes to an extensive program of meiotic splicing in fission yeast. Averbeck, N., Sunder, S., Sample, N., Wise, J.A., Leatherwood, J. Mol. Cell (2005) [Pubmed]
WikiGenes - Universities