The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

RAD3  -  TFIIH/NER complex ATP-dependent 5'-3' DNA...

Saccharomyces cerevisiae S288c

Synonyms: DNA repair helicase RAD3, General transcription and DNA repair factor IIH subunit RAD3, REM1, TFIIH subunit RAD3, YER171W
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of RAD3


High impact information on RAD3

  • The 85 kd and 50 kd subunits of factor b are now identified as RAD3 and SSL1 proteins, respectively; both are known to be involved in DNA repair [3].
  • DNA repair gene RAD3 of S. cerevisiae is essential for transcription by RNA polymerase II [4].
  • The RAD3 gene of Saccharomyces cerevisiae is required for excision repair of ultraviolet-damaged DNA and is essential for cell viability [4].
  • Most strikingly, splicing of crs1 and rem1 is regulated by sequences located outside the coding regions, far from the target introns, a phenomenon previously observed only in metazoans [5].
  • We show that a transcription-defective allele of the Rad3p helicase, a component of the TFIIH transcription initiation factor, suppresses several phenotypes associated with defective mRNA processing and export [6].

Chemical compound and disease context of RAD3


Biological context of RAD3


Anatomical context of RAD3

  • These results were not observed when RAD10 was introduced into excision repair-defective CHO cell lines from other genetic complementation groups, nor when the yeast RAD3 gene was expressed in cells from genetic complementation group 2 [13].

Associations of RAD3 with chemical compounds

  • The product of the RAD3 gene of Saccharomyces cerevisiae is required for mitotic cell viability and excision repair of UV-induced pyrimidine dimers [11].
  • Our results indicate that the RAD3 gene is required for DDRA2 transcript production following NQO or MNNG treatments [14].
  • RAD3 and RAD52 genes act independently in processing DNA damage induced by high concentrations of bleomycin [15].
  • Mutation of lysine-48 to arginine in the yeast RAD3 protein abolishes its ATPase and DNA helicase activities but not the ability to bind ATP [16].
  • The sequence Gly-X-Gly-Lys-Thr, believed to be involved in the interaction with purine nucleotides in proteins that bind and hydrolyze the nucleotides, is present in the RAD3 primary structure between amino acids 45 and 49 [16].

Physical interactions of RAD3


Regulatory relationships of RAD3

  • In UV-irradiated JG-1 (rad1-1), rad3 and rad11 as well as in DEB-inactivated rad7, rad11, rad19 and rad20 the inability of LHR is a constitutive phenomenon and cannot be overcome by exogenous energy supply [19].
  • That the rad3 Arg-48 mutation inactivates the DNA and DNA.RNA helicase activities and confers a substantial reduction in the incision of UV-damaged DNA suggests a role for these activities in incision [20].

Other interactions of RAD3

  • The RAD3 and SSL2 gene products are essential proteins that are also required for the nucleotide excision repair pathway [17].
  • We found that ssl1, rad3 and tfb1 mutants, like rad25(ssl2-xp) mutants, are deficient in both the global NER and TCR pathways [21].
  • Both RAD3 and SIN4 gene products are implicated in the RNA polymerase II transcription process [22].
  • The mode of interaction in haploid Saccharomyces cerevisiae of two pso mutations with each other and with rad mutations affected in their excision-resynthesis (rad3), error-prone (rad6), and deoxyribonucleic acid double-strand break (rad52) repair pathways was determined for various double mutant combinations [23].
  • Consequently, it is proposed that PSO1 and RAD3 genes govern steps in the independent pathways [23].

Analytical, diagnostic and therapeutic context of RAD3


  1. Induction of mitotic crossing-over by the topoisomerase II poison DACA (N-[2-dimethylamino)ethyl]acridine-4-carboxamide) in Saccharomyces cerevisiae. Ferguson, L.R., Turner, P.M., Baguley, B.C. Mutat. Res. (1993) [Pubmed]
  2. Cloning and sequencing of the PIF gene involved in repair and recombination of yeast mitochondrial DNA. Foury, F., Lahaye, A. EMBO J. (1987) [Pubmed]
  3. Dual roles of a multiprotein complex from S. cerevisiae in transcription and DNA repair. Feaver, W.J., Svejstrup, J.Q., Bardwell, L., Bardwell, A.J., Buratowski, S., Gulyas, K.D., Donahue, T.F., Friedberg, E.C., Kornberg, R.D. Cell (1993) [Pubmed]
  4. DNA repair gene RAD3 of S. cerevisiae is essential for transcription by RNA polymerase II. Guzder, S.N., Qiu, H., Sommers, C.H., Sung, P., Prakash, L., Prakash, S. Nature (1994) [Pubmed]
  5. Negative control contributes to an extensive program of meiotic splicing in fission yeast. Averbeck, N., Sunder, S., Sample, N., Wise, J.A., Leatherwood, J. Mol. Cell (2005) [Pubmed]
  6. Modulation of transcription affects mRNP quality. Jensen, T.H., Boulay, J., Olesen, J.R., Colin, J., Weyler, M., Libri, D. Mol. Cell (2004) [Pubmed]
  7. RAD3 gene of Saccharomyces cerevisiae: nucleotide sequence of wild-type and mutant alleles, transcript mapping, and aspects of gene regulation. Naumovski, L., Chu, G., Berg, P., Friedberg, E.C. Mol. Cell. Biol. (1985) [Pubmed]
  8. The DNA helicase activities of Rad3 protein of Saccharomyces cerevisiae and helicase II of Escherichia coli are differentially inhibited by covalent and noncovalent DNA modifications. Naegeli, H., Modrich, P., Friedberg, E.C. J. Biol. Chem. (1993) [Pubmed]
  9. The CHL 1 (CTF 1) gene product of Saccharomyces cerevisiae is important for chromosome transmission and normal cell cycle progression in G2/M. Gerring, S.L., Spencer, F., Hieter, P. EMBO J. (1990) [Pubmed]
  10. Effects of multiple yeast rad3 mutant alleles on UV sensitivity, mutability, and mitotic recombination. Song, J.M., Montelone, B.A., Siede, W., Friedberg, E.C. J. Bacteriol. (1990) [Pubmed]
  11. Analysis of the spectrum of mutations induced by the rad3-102 mutator allele of yeast. Montelone, B.A., Gilbertson, L.A., Nassar, R., Giroux, C., Malone, R.E. Mutat. Res. (1992) [Pubmed]
  12. Nucleotide excision repair genes from the yeast Saccharomyces cerevisiae. Friedberg, E.C., Fleer, R., Naumovski, L., Nicolet, C.M., Robinson, G.W., Weiss, W.A., Yang, E. Basic Life Sci. (1986) [Pubmed]
  13. A yeast DNA repair gene partially complements defective excision repair in mammalian cells. Lambert, C., Couto, L.B., Weiss, W.A., Schultz, R.A., Thompson, L.H., Friedberg, E.C. EMBO J. (1988) [Pubmed]
  14. Transcriptional regulation of DNA damage responsive (DDR) genes in different rad mutant strains of Saccharomyces cerevisiae. Maga, J.A., McClanahan, T.A., McEntee, K. Mol. Gen. Genet. (1986) [Pubmed]
  15. Effects of bleomycin on growth kinetics and survival of Saccharomyces cerevisiae: a model of repair pathways. Keszenman, D.J., Salvo, V.A., Nunes, E. J. Bacteriol. (1992) [Pubmed]
  16. Mutation of lysine-48 to arginine in the yeast RAD3 protein abolishes its ATPase and DNA helicase activities but not the ability to bind ATP. Sung, P., Higgins, D., Prakash, L., Prakash, S. EMBO J. (1988) [Pubmed]
  17. Yeast RAD3 protein binds directly to both SSL2 and SSL1 proteins: implications for the structure and function of transcription/repair factor b. Bardwell, L., Bardwell, A.J., Feaver, W.J., Svejstrup, J.Q., Kornberg, R.D., Friedberg, E.C. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  18. Substrate specificity of the Rad3 ATPase/DNA helicase of Saccharomyces cerevisiae and binding of Rad3 protein to nucleic acids. Naegeli, H., Bardwell, L., Harosh, I., Freidberg, E.C. J. Biol. Chem. (1992) [Pubmed]
  19. Energy requirement for liquid holding recovery from UV- and DEB-induced damage in rad mutants of Saccharomyces cerevisiae. Zaborowska, D., Swietlińska, Z., Haładus, E., Zuk, J. Acta Microbiol. Pol. (1980) [Pubmed]
  20. DNA.RNA helicase activity of RAD3 protein of Saccharomyces cerevisiae. Bailly, V., Sung, P., Prakash, L., Prakash, S. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  21. DNA repair deficiencies associated with mutations in genes encoding subunits of transcription initiation factor TFIIH in yeast. Sweder, K.S., Chun, R., Mori, T., Hanawalt, P.C. Nucleic Acids Res. (1996) [Pubmed]
  22. The KIN28 gene is required both for RNA polymerase II mediated transcription and phosphorylation of the Rpb1p CTD. Valay, J.G., Simon, M., Dubois, M.F., Bensaude, O., Facca, C., Faye, G. J. Mol. Biol. (1995) [Pubmed]
  23. Interactions between mutations for sensitivity to psoralen photoaddition (pso) and to radiation (rad) in Saccharomyces cerevisiae. Henriques, J.A., Moustacchi, E. J. Bacteriol. (1981) [Pubmed]
  24. Molecular cloning of eucaryotic genes required for excision repair of UV-irradiated DNA: isolation and partial characterization of the RAD3 gene of Saccharomyces cerevisiae. Naumovski, L., Friedberg, E.C. J. Bacteriol. (1982) [Pubmed]
  25. The Schizosaccharomyces pombe rad3 checkpoint gene. Bentley, N.J., Holtzman, D.A., Flaggs, G., Keegan, K.S., DeMaggio, A., Ford, J.C., Hoekstra, M., Carr, A.M. EMBO J. (1996) [Pubmed]
  26. Relation between liquid-holding recovery, DNA repair, and mitotic recombination in the rad3 mutant of Saccharomyces cerevisiae after treatment with diepoxybutane (DEB). Zuk, J., Swietlińska, Z., Zaborowska, D., Haładus, E., Jachymczyk, W. Mol. Gen. Genet. (1980) [Pubmed]
  27. Analysis of the rad3-101 and rad3-102 mutations of Saccharomyces cerevisiae: implications for structure/function of Rad3 protein. Montelone, B.A., Malone, R.E. Yeast (1994) [Pubmed]
WikiGenes - Universities