The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Saccharomycetales


High impact information on Saccharomycetales

  • Here, we test these models quantitatively for the case of SIR2-dependent silencing in budding yeast, using foreign and endogenous reporter proteins, at transgenic and endogenous loci [4].
  • We report here that Swe1, the budding-yeast homolog of Wee1, is directly regulated by Cdk1 [5].
  • Assembly of silent chromatin domains in budding yeast involves the deacetylation of histone tails by Sir2 and the association of the Sir3 and Sir4 proteins with hypoacetylated histone tails [6].
  • Previously, we used live-cell imaging of six budding-yeast proteins to define a pathway for association of receptors, adaptors, and actin during endocytic internalization [7].
  • In this issue of Cell, the Hall group describes how the rapamycin-sensitive TOR signaling network controls ribosomal protein (RP) gene expression via the Forkhead-like transcription factor FHL1 in budding yeast (Martin et al., 2004) [8].

Biological context of Saccharomycetales


Anatomical context of Saccharomycetales


Associations of Saccharomycetales with chemical compounds


Gene context of Saccharomycetales


Analytical, diagnostic and therapeutic context of Saccharomycetales


  1. Activation of budding yeast replication origins and suppression of lethal DNA damage effects on origin function by ectopic expression of the co-chaperone protein Mge1. Trabold, P.A., Weinberger, M., Feng, L., Burhans, W.C. J. Biol. Chem. (2005) [Pubmed]
  2. Mutation of YCS4, a budding yeast condensin subunit, affects mitotic and nonmitotic chromosome behavior. Bhalla, N., Biggins, S., Murray, A.W. Mol. Biol. Cell (2002) [Pubmed]
  3. Budding yeast as a screening tool for discovery of nucleoside analogs for use in HSV-1 TK suicide-gene therapy. Wera, S., Degrève, B., Balzarini, J., De Clercq, E., Thevelein, J.M., Neyts, J. BioTechniques (1999) [Pubmed]
  4. Mechanism of transcriptional silencing in yeast. Chen, L., Widom, J. Cell (2005) [Pubmed]
  5. Cdk1-dependent regulation of the mitotic inhibitor Wee1. Harvey, S.L., Charlet, A., Haas, W., Gygi, S.P., Kellogg, D.R. Cell (2005) [Pubmed]
  6. Assembly of the SIR complex and its regulation by O-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation. Liou, G.G., Tanny, J.C., Kruger, R.G., Walz, T., Moazed, D. Cell (2005) [Pubmed]
  7. A modular design for the clathrin- and actin-mediated endocytosis machinery. Kaksonen, M., Toret, C.P., Drubin, D.G. Cell (2005) [Pubmed]
  8. Ribosome biogenesis: giant steps for a giant problem. Powers, T. Cell (2004) [Pubmed]
  9. RB from a bud's eye view. Schaefer, J.B., Breeden, L.L. Cell (2004) [Pubmed]
  10. Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Shou, W., Seol, J.H., Shevchenko, A., Baskerville, C., Moazed, D., Chen, Z.W., Jang, J., Shevchenko, A., Charbonneau, H., Deshaies, R.J. Cell (1999) [Pubmed]
  11. Cdc14 and condensin control the dissolution of cohesin-independent chromosome linkages at repeated DNA. D'Amours, D., Stegmeier, F., Amon, A. Cell (2004) [Pubmed]
  12. Budding yeast SKP1 encodes an evolutionarily conserved kinetochore protein required for cell cycle progression. Connelly, C., Hieter, P. Cell (1996) [Pubmed]
  13. Mother cell-specific HO expression in budding yeast depends on the unconventional myosin myo4p and other cytoplasmic proteins. Jansen, R.P., Dowzer, C., Michaelis, C., Galova, M., Nasmyth, K. Cell (1996) [Pubmed]
  14. ACTIN: general principles from studies in yeast. Ayscough, K.R., Drubin, D.G. Annu. Rev. Cell Dev. Biol. (1996) [Pubmed]
  15. The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast. Biggins, S., Severin, F.F., Bhalla, N., Sassoon, I., Hyman, A.A., Murray, A.W. Genes Dev. (1999) [Pubmed]
  16. Maintenance of the diacylglycerol level in the Golgi apparatus by the Nir2 protein is critical for Golgi secretory function. Litvak, V., Dahan, N., Ramachandran, S., Sabanay, H., Lev, S. Nat. Cell Biol. (2005) [Pubmed]
  17. Mmr1p is a mitochondrial factor for Myo2p-dependent inheritance of mitochondria in the budding yeast. Itoh, T., Toh-E, A., Matsui, Y. EMBO J. (2004) [Pubmed]
  18. A presumptive developmental role for a sea urchin cyclin B splice variant. Lozano, J.C., Schatt, P., Marquès, F., Peaucellier, G., Fort, P., Féral, J.P., Genevière, A.M., Picard, A. J. Cell Biol. (1998) [Pubmed]
  19. Coordinate regulation of sugar flux and translation by PAS kinase. Rutter, J., Probst, B.L., McKnight, S.L. Cell (2002) [Pubmed]
  20. S-phase feedback control in budding yeast independent of tyrosine phosphorylation of p34cdc28. Sorger, P.K., Murray, A.W. Nature (1992) [Pubmed]
  21. Repression of growth-regulated G1 cyclin expression by cyclic AMP in budding yeast. Baroni, M.D., Monti, P., Alberghina, L. Nature (1994) [Pubmed]
  22. A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Santocanale, C., Diffley, J.F. Nature (1998) [Pubmed]
  23. The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint. Biggins, S., Murray, A.W. Genes Dev. (2001) [Pubmed]
  24. The role of CDC28 and cyclins during mitosis in the budding yeast S. cerevisiae. Surana, U., Robitsch, H., Price, C., Schuster, T., Fitch, I., Futcher, A.B., Nasmyth, K. Cell (1991) [Pubmed]
  25. Transcriptional activation of CLN1, CLN2, and a putative new G1 cyclin (HCS26) by SWI4, a positive regulator of G1-specific transcription. Ogas, J., Andrews, B.J., Herskowitz, I. Cell (1991) [Pubmed]
  26. CDC27Hs colocalizes with CDC16Hs to the centrosome and mitotic spindle and is essential for the metaphase to anaphase transition. Tugendreich, S., Tomkiel, J., Earnshaw, W., Hieter, P. Cell (1995) [Pubmed]
  27. Human securin interacts with p53 and modulates p53-mediated transcriptional activity and apoptosis. Bernal, J.A., Luna, R., Espina, A., Lázaro, I., Ramos-Morales, F., Romero, F., Arias, C., Silva, A., Tortolero, M., Pintor-Toro, J.A. Nat. Genet. (2002) [Pubmed]
  28. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. Gantner, B.N., Simmons, R.M., Underhill, D.M. EMBO J. (2005) [Pubmed]
  29. MAD3 encodes a novel component of the spindle checkpoint which interacts with Bub3p, Cdc20p, and Mad2p. Hardwick, K.G., Johnston, R.C., Smith, D.L., Murray, A.W. J. Cell Biol. (2000) [Pubmed]
  30. A fission yeast homolog of CDC20/p55CDC/Fizzy is required for recovery from DNA damage and genetically interacts with p34cdc2. Matsumoto, T. Mol. Cell. Biol. (1997) [Pubmed]
  31. A prenylation motif is required for plasma membrane localization and biochemical function of casein kinase I in budding yeast. Vancura, A., Sessler, A., Leichus, B., Kuret, J. J. Biol. Chem. (1994) [Pubmed]
  32. Production of human gastric lipase in the fission yeast Schizosaccharomyces pombe. Smerdon, G.R., Aves, S.J., Walton, E.F. Gene (1995) [Pubmed]
WikiGenes - Universities