Keratocan expression of murine keratocytes is maintained on amniotic membrane by down-regulating transforming growth factor-beta signaling.
Keratocytes in the corneal stroma express keratan sulfate-containing proteoglycans including cornea-specific keratocan. On plastic dishes, human, bovine, and rabbit keratocytes lose their characteristic dendritic morphology and keratocan expression when cultured in serum-containing media. Herein, we demonstrated that murine keratocytes also acquired a fibroblastic shape and lost keratocan expression after first passage when cultured on plastic in the presence of serum. In contrast, cells expanded on human amniotic membrane (AM) stromal matrix maintained a three-dimensional dendritic morphology and expressed keratocan mRNA and protein for at least 8 passages before senescence. When keratocytes were cultured on AM, the promoter activity of transforming growth factor (TGF)-beta2 and TGF-beta receptor II was down-regulated as compared with that on plastic. Furthermore, cells on AM continuously retained Smad 2 and Smad 4 in the cytoplasm and did not express alpha-smooth muscle actin, even when 10 ng/ml TGF-beta1 was added in a serum-free medium for up to 5 days. In parallel to such down-regulation of TGF-beta signaling, keratocan promoter-driven ECFP expression was observed in cells cultured either on AM in the presence of serum or on plastic containing serum treated with a neutralizing antibody to TGF-beta. Collectively, these results indicate that down-regulation of Smad- mediated TGF-beta signaling is an important mechanism for cultured keratocytes to maintain a normal phenotype while continuously expanded in a serum-containing medium. This strategy of suppressing TGF-beta signaling, achieved by AM stromal matrix in part via suppression of TGF-beta gene transcription, can be used to expand keratocytes in culture without the use of AM in the future.[1]References
- Keratocan expression of murine keratocytes is maintained on amniotic membrane by down-regulating transforming growth factor-beta signaling. Kawakita, T., Espana, E.M., He, H., Hornia, A., Yeh, L.K., Ouyang, J., Liu, C.Y., Tseng, S.C. J. Biol. Chem. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg









