The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Corneal Stroma

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Corneal Stroma

 

High impact information on Corneal Stroma

 

Biological context of Corneal Stroma

 

Anatomical context of Corneal Stroma

 

Associations of Corneal Stroma with chemical compounds

  • There is accumulation of phospholipid, unesterified cholesterol and cholesterol ester in the corneal stroma; this is believed to be due to an imbalance in the local factors affecting lipid/cholesterol transport or metabolism [21].
  • beta-D xyloside alters dermatan sulfate proteoglycan synthesis and the organization of the developing avian corneal stroma [22].
  • Radioisotopically labeled proteoglycans were isolated from a 4 M guanidine HCl, 2% Triton X-100 extract of corneal stroma from day 18 chicken embryos by anion-exchange chromatography [23].
  • Immunochemical techniques were used to determine whether cells of the avascular corneal stroma (keratocytes) have the ability to synthesize thrombo- spondin 1 (TSP1), a glycoprotein originally described in platelets and more recently implicated in regulating cell behavior (e.g., migration) during wound repair in vascular tissue [24].
  • Hydrogel ICLs of 54%, 63%, 66% and 71% water content showed no loss of hydration (by weight) after one week in the rabbit corneal stroma [25].
 

Gene context of Corneal Stroma

 

Analytical, diagnostic and therapeutic context of Corneal Stroma

References

  1. Corneal stromal calcification after topical steroid-phosphate therapy. Schlötzer-Schrehardt, U., Zagórski, Z., Holbach, L.M., Hofmann-Rummelt, C., Naumann, G.O. Arch. Ophthalmol. (1999) [Pubmed]
  2. Transforming growth factor-beta induced protein, betaIG-H3, is present in degraded form and altered localization in lattice corneal dystrophy type I. Takács, L., Boross, P., Tözser, J., Módis, L., Tóth, G., Berta, A. Exp. Eye Res. (1998) [Pubmed]
  3. Spatial distribution of keratan sulfate in the rabbit cornea following photorefractive keratectomy. Resch, M.D., Nagy, Z.Z., Szentmáry, N., Máthé, M., Kovalszky, I., Süveges, I. Journal of refractive surgery (Thorofare, N.J. : 1995) (2005) [Pubmed]
  4. Suppression of experimental corneal angiogenesis by focal X-ray irradiation. Miyamoto, H., Kimura, H., Yasukawa, T., Yang, C.F., Honda, Y., Tabata, Y., Ikada, Y., Sasai, K., Ogura, Y. Curr. Eye Res. (1999) [Pubmed]
  5. Long-term follow-up of patients with conjunctival melanoma. Werschnik, C., Lommatzsch, P.K. Am. J. Clin. Oncol. (2002) [Pubmed]
  6. Three autosomal dominant corneal dystrophies map to chromosome 5q. Stone, E.M., Mathers, W.D., Rosenwasser, G.O., Holland, E.J., Folberg, R., Krachmer, J.H., Nichols, B.E., Gorevic, P.D., Taylor, C.M., Streb, L.M. Nat. Genet. (1994) [Pubmed]
  7. Interleukin 4 and T helper type 2 cells are required for development of experimental onchocercal keratitis (river blindness). Pearlman, E., Lass, J.H., Bardenstein, D.S., Kopf, M., Hazlett, F.E., Diaconu, E., Kazura, J.W. J. Exp. Med. (1995) [Pubmed]
  8. Type V collagen: molecular structure and fibrillar organization of the chicken alpha 1(V) NH2-terminal domain, a putative regulator of corneal fibrillogenesis. Linsenmayer, T.F., Gibney, E., Igoe, F., Gordon, M.K., Fitch, J.M., Fessler, L.I., Birk, D.E. J. Cell Biol. (1993) [Pubmed]
  9. Differences between two fractions of glycosaminoglycans of the corneal stroma in their structural relation to collagen. Dische, Z., Cremer-Bartels, G., Kaye, G.I. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  10. Expression of the homeobox gene Pitx2 in neural crest is required for optic stalk and ocular anterior segment development. Evans, A.L., Gage, P.J. Hum. Mol. Genet. (2005) [Pubmed]
  11. Does chondroitin sulfate have a role to play in the morphogenesis of the chick primary corneal stroma? Bansal, M.K., Ross, A.S., Bard, J.B. Dev. Biol. (1989) [Pubmed]
  12. Regionalized growth patterns of young chicken corneas. Rada, J.A., Fini, M.E., Hassell, J.R. Invest. Ophthalmol. Vis. Sci. (1996) [Pubmed]
  13. Visualization and characterization of inflammatory cell recruitment and migration through the corneal stroma in endotoxin-induced keratitis. Carlson, E.C., Drazba, J., Yang, X., Perez, V.L. Invest. Ophthalmol. Vis. Sci. (2006) [Pubmed]
  14. Corneal stromal cells (keratocytes) express thrombospondins 2 and 3 in wound repair phenotype. Armstrong, D.J., Hiscott, P., Batterbury, M., Kaye, S. Int. J. Biochem. Cell Biol. (2002) [Pubmed]
  15. Identification of a 3.2 kb 5'-flanking region of the murine keratocan gene that directs beta-galactosidase expression in the adult corneal stroma of transgenic mice. Liu, C., Arar, H., Kao, C., Kao, W.W. Gene (2000) [Pubmed]
  16. Aquaporin deletion in mice reduces corneal water permeability and delays restoration of transparency after swelling. Thiagarajah, J.R., Verkman, A.S. J. Biol. Chem. (2002) [Pubmed]
  17. Purification of keratan sulfate proteoglycan from monkey cornea. Nakazawa, K., Newsome, D.A., Nilsson, B., Hascall, V.C., Hassell, J.R. J. Biol. Chem. (1983) [Pubmed]
  18. An evaluation of the role of leukocytes in the pathogenesis of experimentally induced corneal vascularization. II. Studies on the effect of leukocytic elimination on corneal vascularization. Fromer, C.H., Klintworth, G.K. Am. J. Pathol. (1975) [Pubmed]
  19. Keratan sulfate proteoglycan during embryonic development of the chicken cornea. Funderburgh, J.L., Caterson, B., Conrad, G.W. Dev. Biol. (1986) [Pubmed]
  20. Pathogenesis of herpes simplex virus-induced ocular immunoinflammatory lesions in B-cell-deficient mice. Deshpande, S.P., Zheng, M., Daheshia, M., Rouse, B.T. J. Virol. (2000) [Pubmed]
  21. The gene for schnyder's crystalline corneal dystrophy maps to human chromosome 1p34.1-p36. Shearman, A.M., Hudson, T.J., Andresen, J.M., Wu, X., Sohn, R.L., Haluska, F., Housman, D.E., Weiss, J.S. Hum. Mol. Genet. (1996) [Pubmed]
  22. beta-D xyloside alters dermatan sulfate proteoglycan synthesis and the organization of the developing avian corneal stroma. Hahn, R.A., Birk, D.E. Development (1992) [Pubmed]
  23. Analysis of the proteoglycans synthesized by corneal explants from embryonic chicken. II. Structural characterization of the keratan sulfate and dermatan sulfate proteoglycans from corneal stroma. Midura, R.J., Hascall, V.C. J. Biol. Chem. (1989) [Pubmed]
  24. Keratocytes produce thrombospondin 1: evidence for cell phenotype-associated synthesis. Hiscott, P., Sorokin, L., Nagy, Z.Z., Schlötzer-Schrehardt, U., Naumann, G.O. Exp. Cell Res. (1996) [Pubmed]
  25. Hydration stability of intracorneal hydrogel implants. Beekhuis, W.H., McCarey, B.E. Invest. Ophthalmol. Vis. Sci. (1985) [Pubmed]
  26. Tear levels and activity of matrix metalloproteinase (MMP)-1 and MMP-9 in vernal keratoconjunctivitis. Leonardi, A., Brun, P., Abatangelo, G., Plebani, M., Secchi, A.G. Invest. Ophthalmol. Vis. Sci. (2003) [Pubmed]
  27. Involvement of insulin-like growth factor-I and insulin-like growth factor binding protein-3 in corneal fibroblasts during corneal wound healing. Izumi, K., Kurosaka, D., Iwata, T., Oguchi, Y., Tanaka, Y., Mashima, Y., Tsubota, K. Invest. Ophthalmol. Vis. Sci. (2006) [Pubmed]
  28. Disruption of anterior segment development by TGF-beta1 overexpression in the eyes of transgenic mice. Flügel-Koch, C., Ohlmann, A., Piatigorsky, J., Tamm, E.R. Dev. Dyn. (2002) [Pubmed]
  29. Characterization and functionality of CXCR4 chemokine receptor and SDF-1 in human corneal fibroblasts. Bourcier, T., Berbar, T., Paquet, S., Rondeau, N., Thomas, F., Borderie, V., Laroche, L., Rostène, W., Haour, F., Lombet, A. Mol. Vis. (2003) [Pubmed]
  30. IL-1 upregulates keratinocyte growth factor and hepatocyte growth factor mRNA and protein production by cultured stromal fibroblast cells: interleukin-1 beta expression in the cornea. Weng, J., Mohan, R.R., Li, Q., Wilson, S.E. Cornea (1997) [Pubmed]
  31. Identification of a novel macrophage population in the normal mouse corneal stroma. Brissette-Storkus, C.S., Reynolds, S.M., Lepisto, A.J., Hendricks, R.L. Invest. Ophthalmol. Vis. Sci. (2002) [Pubmed]
  32. Substance P-immunoreactive nerves in the human cornea and iris. Tervo, K., Tervo, T., Eränkö, L., Vannas, A., Cuello, A.C., Eränkö, O. Invest. Ophthalmol. Vis. Sci. (1982) [Pubmed]
  33. Human corneal endothelial permeability to fluorescein and fluorescein glucuronide. Seto, C., Araie, M., Sawa, M., Takase, M. Invest. Ophthalmol. Vis. Sci. (1987) [Pubmed]
  34. Differential expression of alternatively spliced fibronectin in normal and wounded rat corneal stroma versus epithelium. Vitale, A.T., Pedroza-Seres, M., Arrunategui-Correa, V., Lee, S.J., DiMeo, S., Foster, C.S., Colvin, R.B. Invest. Ophthalmol. Vis. Sci. (1994) [Pubmed]
 
WikiGenes - Universities