Early nuclear translocation of endonuclease G and subsequent DNA fragmentation after transient focal cerebral ischemia in mice.
We investigated whether the endonuclease G (endoG) translocated from mitochondria to nucleus after transient focal cerebral ischemia (tFCI), thereby contributed to subsequent DNA fragmentation. Adult male mice were subjected to 60min of focal cerebral ischemia by intraluminal suture blockade of the middle cerebral artery. Western blot analysis for endoG was performed at various time points of tFCI. Nuclear endoG was detected as early as 4h after tFCI in the ischemic brain, and correspondingly mitochondrial endoG showed a significant reduction at 4h after reperfusion (p<0.01). Immunohistochemistry of endoG confirmed that the nuclear translocation of endoG was detected as early as 4h after tFCI in the middle cerebral artery (MCA) territory of the ischemic brain. Double immunofluorescent staining with endoG and AIF showed that endoG was predominantly colocalized with AIF at 24h after tFCI. Double staining with endoG immunohistochemistry and TdT-mediated dUTP-biotin nick end labeling showed a spatial relationship between endoG expression and DNA fragmentation at 24h after tFCI. These data suggest that the early nuclear translocation of endoG occurs and could induce DNA fragmentation in the ischemic brain after tFCI.[1]References
- Early nuclear translocation of endonuclease G and subsequent DNA fragmentation after transient focal cerebral ischemia in mice. Lee, B.I., Lee, D.J., Cho, K.J., Kim, G.W. Neurosci. Lett. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg