The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Error-prone repair and translesion synthesis III: the activation of UmuD (or less is more).

Following DNA damage to Escherichia coli bacteria, RecA protein is activated by binding to single stranded DNA and cleaves its own gene repressor (LexA protein). Two papers from Graham Walker's laboratory showed that several bacterial genes in addition to RecA are repressed by the LexA repressor and are inducible following DNA damage [C.J. Keyon, G.C. Walker, DNA-damaging agents stimulate gene expression at specific loci in Escherichia coli, in: Proceedings of the National Academy of Sciences of the United States of America 77, 1980, pp. 2819--2823] and predicted that one of them ( UmuD) might itself be subject to activation by a further cleavage reaction involving activated RecA protein [K.L. Perry, S.J. Elledge, B.B. Mitchell, L. Marsh, G.C. Walker, umuD,C and mucA,B operans whose products are required for UV light- and chemical-induced mutagenesis: UmuD, MucA, and LexA proteins share homology, in: Proceedings of the National Academy of Sciences of the United States of America 82, 1985, pp. 4331--4335]. The processed form of UmuD, termed UmuD', later proved to be a subunit of DNA polymerase V, a key enzyme involved in translesion synthesis.[1]


WikiGenes - Universities