The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Respiratory syncytial virus influences NF-kappaB-dependent gene expression through a novel pathway involving MAP3K14/ NIK expression and nuclear complex formation with NF-kappaB2.

A member of the Paramyxoviridae family of RNA viruses, respiratory syncytial virus (RSV), is a leading cause of epidemic respiratory tract infection in children. In children, RSV primarily replicates in the airway mucosa, a process that alters epithelial cell chemokine expression, thereby inducing airway inflammation. We investigated the role of the mitogen-activated protein kinase kinase kinase 14/NF-kappaB-inducing kinase ( NIK) in the activation of NF-kappaB-dependent genes in alveolus-like A549 cells. RSV infection induces a time dependent increase of NIK mRNA and protein expression that peaks 12 to 24 h after viral exposure. Immunoprecipitation kinase assays indicate that NIK kinase activity is activated even more rapidly (within 6 h of RSV adsorption) associated with an endogenous approximately 50-kDa NF-kappaB2 substrate. Because NIK associates with IKKalpha to mediate processing of the 100-kDa NF-kappaB2 precursor into its 52-kDa DNA binding isoform (" p52"), the effects of RSV on NIK complex formation with IKKalpha and NF-kappaB2 were determined by coimmunoprecipitation assay. We find that NIK, IKKalpha, and both 100 kDa- and 52-kDa NF-kappaB2 isoforms strongly complex 15 h after exposure to RSV at times subsequent to NIK kinase activation. Western immunoblot and microaffinity DNA pull-down assays showed a parallel increase in nuclear translocation and DNA binding of the NF-kappaB2-Rel B complex. Interestingly, we make the novel observations that NIK also transiently translocates into the nucleus complexed with 52-kDa NF-kappaB2. Small interfering RNA-mediated NIK "knock-down" blocked RSV-inducible 52-kDa NF-kappaB2 processing and interfered with the early activation of a subset of NF-kappaB-dependent genes, indicating the importance of this activation pathway in the genomic NF-kappaB response to RSV. Together, these data indicate that RSV infection rapidly activates the noncanonical NF-kappaB activation pathway prior to the more potent canonical pathway activation. This appears to be through a novel mechanism involving induction of NIK kinase activity, expression, and nuclear translocation of a ternary complex with IKKalpha and processed NF-kappaB2.[1]


WikiGenes - Universities