Uptake, cellular distribution and novel cellular binding proteins of immunostimulatory CpG oligodeoxynucleotides in glioblastoma cells.
Glioblastomas are the most malignant and most frequent brain tumors and exciting targets of gene and immunotherapy. Despite rapid development of experimental therapy little is known about the cellular behaviour of therapeutic oligodeoxynucleotides (ODNs). Here we designed uptake, cellular distribution and cellular binding proteins of immunostimulatory CpG-ODNs in glioblastoma cells by flow cytometry, fluorescence microscopy and mass spectrometry. Our data show that the phosphorothioate (PS) CpG-ODNs uptake in T98G and C6 cells is dose-, time-, temperature-dependent and independent of the CpG dinucleotides. Uptake can be inhibited by sodium azide, polyanions but not by chloroquine. After internalisation FITC labelled CpG-ODNs showed a spotted distribution in cytoplasm. Dozens of cellular binding proteins were identified using mass spectrometry. The binding of ODNs to proteins is dependent on modification and sequence but independent on CpG motif. ODNs bind to cellular proteins that are important for RNA processing and transport. Furthermore, three novel membrane proteins were identified, which might contribute to uptake of ODNs. ODNs binding to these proteins might interfere with the physiological function and thus might cause unwanted effects. Such binding also might influence the uptake efficiency or cellular distribution of therapeutic ODNs.[1]References
- Uptake, cellular distribution and novel cellular binding proteins of immunostimulatory CpG oligodeoxynucleotides in glioblastoma cells. Zhang, Z., Weinschenk, T., Schluesener, H.J. Mol. Cell. Biochem. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg