The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Feed restriction induces pyruvate carboxylase but not phosphoenolpyruvate carboxykinase in dairy cows.

The ability of dairy cattle to adapt to changes in nutrient intake requires appropriately responsive expression of several key genes in liver. Holstein cows were used in 2 experiments to determine the effect of short-term feed restriction on expression of mRNA for gluconeogenic and ureagenic enzymes in liver. In experiment 1, cows were fed a total mixed diet for ad libitum intake for a 5-d period followed by 5 d of 50% of their previous 5-d ad libitum intake followed by 10 d of ad libitum feeding. Liver biopsies and blood samples were obtained on d 5, 10, and 20 of the experiment, the last day of each feeding period. Pyruvate carboxylase (PC) mRNA increased with feed restriction, but phosphoenolpyruvate carboxykinase (PEPCK) was unchanged. Expression of carbamoyl phosphate synthetase (CPS-I), argininosuccinate synthetase, and ornithine transcarbamylase mRNA were not altered by feed restriction; however, CPS-I mRNA expression tended to increase during realimentation. In experiment 2, cows were fed for ad libitum intake for 5 d and then fed 50% of previous intake for 5 d. Liver biopsy samples collected on d 5 and 10 were used for PC mRNA, PEPCK mRNA, and in vitro measure of gluconeogenesis from radiolabelled propionate and lactate. The data indicate expression of genes for key metabolic processes in liver of lactating cows is responsive to feeding level. Expression of PC mRNA is part of the adaptive response to feed intake restriction and is matched by increased capacity for gluconeogenesis from lactate.[1]


WikiGenes - Universities