The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Carbamoyl     aminomethanone

Synonyms: aminooxomethyl, AC1NUTM5, CHEBI:33100, H2NCO(.), Carbamoyl radical, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of aminomethanone

 

High impact information on aminomethanone

 

Chemical compound and disease context of aminomethanone

 

Biological context of aminomethanone

  • The recently determined three-dimensional structure of carbamoyl phosphate synthetase sets a new long distance record in that the three active sites are separated by nearly 100 A [16].
  • In this mechanism utilization of ATP bound to domain C is coupled to carbamoyl-phosphate synthesis at domain B via a nucleotide switch, with the energy of ATP hydrolysis at domain C allowing domain B to cycle between two alternative conformations [17].
  • Three catalytic domains of the Escherichia coli carbamoyl-phosphate synthetase (EC 6.3.5.5) have been identified in previous studies [18].
  • DNA sequence of the carA gene and the control region of carAB: tandem promoters, respectively controlled by arginine and the pyrimidines, regulate the synthesis of carbamoyl-phosphate synthetase in Escherichia coli K-12 [19].
  • Additional ORFs are involved in postsynthetic modifications of the initial polyketide synthase product, which include methylations, an epoxidation, an aromatic chlorination, and the introduction of acyl and carbamoyl groups [20].
 

Anatomical context of aminomethanone

  • These results indicate that ornithine transcarbamylase and carbamoyl-phosphate synthetase I are initially synthesized as larger precursors and exist in a cytosolic pool from which they are transported into mitochondria and processed there to the mature enzymes concomitantly with or immediately after transport [21].
  • Rather, it is broadly distributed to most hepatocytes, much like carbamoyl-phosphate synthetase I in mammalian liver [22].
  • Using charomid 9-36, we have cloned and mapped an amplified novel DNA fragment from a cell line resistant to N-(phosphonoacetyl)-L-aspartate and carrying about 100 copies of the CAD (carbamoyl-phosphate synthetase/aspartate carbamoyltransferase/dihydroorotase) gene [23].
  • Carbamoyl phosphate synthetase III gave no detectable immunological cross-reaction with antibody to the ammonia- and N-acetyl-L-glutamate-dependent carbamoyl phosphate synthetase from rat liver mitochondria [24].
  • In mammalian species, these three enzyme activities exist in the cytosol in liver and other tissues as a multifunctional complex on a single polypeptide called carbamoyl-phosphate synthetase-aspartate transcarbamoylase-dihydroorotase (CAD) in the order of NH2-CPSase II-DHOase-ATCase-COOH [25].
 

Associations of aminomethanone with other chemical compounds

  • X-ray structures of aspartate transcarbamoylase in the absence and presence of the first substrate carbamoyl phosphate are reported [26].
  • The large subunit of carbamoyl phosphate synthase A [carbon-dioxide: L-glutamine amido-ligase (ADP-forming, carbamate-phosphorylating), EC 6.3.5.5] from Neurospora crassa is encoded by a nuclear gene but is localized in the mitochondrial matrix [27].
  • Carbamoyl-phosphate synthetase (ammonia) (EC 6.3.4.16) and ornithine carbamoyltransferase (EC 2.1.3.3) are matrix enzymes synthesized outside the mitochondria in the form of larger precursors and are transported rapidly into mitochondria, in association with post-translational proteolytic processing to the mature enzymes [28].
  • The carbamoyl phosphate synthetase domain of the multifunctional protein CAD catalyzes the initial, rate-limiting step in mammalian de novo pyrimidine biosynthesis [29].
  • High levels of both glutamine synthetase and a unique L-glutamine- and N-acetyl-L-glutamate-dependent carbamoyl phosphate synthetase are present in the mitochondria in livers of marine urea-retaining elasmobranchs (Casey, C. A., and Anderson, P. M. (1982) J. Biol. Chem. 257, 8449-8453) [30].
 

Gene context of aminomethanone

 

Analytical, diagnostic and therapeutic context of aminomethanone

  • These cells do not express carbamoyl-phosphate synthetase I. Using immunocytochemistry, we show here that there is little or no zonation of glutamine synthetase in avian liver [22].
  • The catalytic functions of the amino-terminal and carboxyl-terminal halves of the large subunit of carbamoyl phosphate synthetase from Escherichia coli have been identified using site-directed mutagenesis [36].
  • Differential scanning calorimetry of Escherichia coli carbamoyl-phosphate synthetase and its isolated large and small subunits reveals in each case an irreversible, kinetically controlled transition, at a temperature 14 degrees C higher for the holoenzyme than for the subunits, indicating dramatic stabilization of the subunits in the heterodimer [37].
  • The degree of constriction within the ammonia tunnel of these enzymes was found to correlate to the extent of the uncoupling of the partial reactions, the diminution of carbamoyl phosphate formation, and the percentage of the internally derived ammonia that is channeled through the ammonia tunnel [38].
  • Circular dichroism spectroscopy indicates that saturating carbamoyl phosphate does not induce the same conformational change in the Ser-52----Ala holoenzyme as it does for the wild-type holoenzyme [39].

References

  1. Cloning of a yeast gene coding for arginine-specific carbamoyl-phosphate synthetase. Lusty, C.J., Lu, J. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  2. Crystal structure of Pseudomonas aeruginosa catabolic ornithine transcarbamoylase at 3.0-A resolution: a different oligomeric organization in the transcarbamoylase family. Villeret, V., Tricot, C., Stalon, V., Dideberg, O. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  3. Three unusual modifications, a D-arabinosyl, an N-methyl, and a carbamoyl group, are present on the Nod factors of Azorhizobium caulinodans strain ORS571. Mergaert, P., Van Montagu, M., Promé, J.C., Holsters, M. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  4. Spontaneous and 5-azacytidine-induced reexpression of ornithine carbamoyl transferase in hepatoma cells. Delers, A., Szpirer, J., Szpirer, C., Saggioro, D. Mol. Cell. Biol. (1984) [Pubmed]
  5. Disruption of hepatic C/EBPalpha results in impaired glucose tolerance and age-dependent hepatosteatosis. Inoue, Y., Inoue, J., Lambert, G., Yim, S.H., Gonzalez, F.J. J. Biol. Chem. (2004) [Pubmed]
  6. Neonatal pulmonary hypertension--urea-cycle intermediates, nitric oxide production, and carbamoyl-phosphate synthetase function. Pearson, D.L., Dawling, S., Walsh, W.F., Haines, J.L., Christman, B.W., Bazyk, A., Scott, N., Summar, M.L. N. Engl. J. Med. (2001) [Pubmed]
  7. Allopurinol-induced orotidinuria. A test for mutations at the ornithine carbamoyltransferase locus in women. Hauser, E.R., Finkelstein, J.E., Valle, D., Brusilow, S.W. N. Engl. J. Med. (1990) [Pubmed]
  8. Regulation of carbamoyl phosphate synthetase by MAP kinase. Graves, L.M., Guy, H.I., Kozlowski, P., Huang, M., Lazarowski, E., Pope, R.M., Collins, M.A., Dahlstrand, E.N., Earp, H.S., Evans, D.R. Nature (2000) [Pubmed]
  9. Evolution of urea synthesis in vertebrates: the piscine connection. Mommsen, T.P., Walsh, P.J. Science (1989) [Pubmed]
  10. Postpartum coma and death due to carbamoyl-phosphate synthetase I deficiency. Wong, L.J., Craigen, W.J., O'Brien, W.E. Ann. Intern. Med. (1994) [Pubmed]
  11. Zn(II)-induced cooperativity of Escherichia coli ornithine transcarbamoylase. Kuo, L.C., Lipscomb, W.N., Kantrowitz, E.R. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  12. Multiple regulatory signals in the control region of the Escherichia coli carAB operon. Bouvier, J., Patte, J.C., Stragier, P. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  13. Functional arginyl residues as ATP binding sites of glutamine synthetase and carbamyl phosphate synthetase. Powers, S.G., Riordan, J.F. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  14. Genetic characterization of the folding domains of the catalytic chains in aspartate transcarbamoylase. Jenness, D.D., Schachman, H.K. J. Biol. Chem. (1983) [Pubmed]
  15. Three-dimensional structure of human gamma -glutamyl hydrolase. A class I glatamine amidotransferase adapted for a complex substate. Li, H., Ryan, T.J., Chave, K.J., Van Roey, P. J. Biol. Chem. (2002) [Pubmed]
  16. Carbamoyl phosphate synthetase: a tunnel runs through it. Holden, H.M., Thoden, J.B., Raushel, F.M. Curr. Opin. Struct. Biol. (1998) [Pubmed]
  17. Novel mechanism for carbamoyl-phosphate synthetase: a nucleotide switch for functionally equivalent domains. Kothe, M., Eroglu, B., Mazza, H., Samudera, H., Powers-Lee, S. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  18. Escherichia coli carbamoyl-phosphate synthetase: domains of glutaminase and synthetase subunit interaction. Guillou, F., Rubino, S.D., Markovitz, R.S., Kinney, D.M., Lusty, C.J. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  19. DNA sequence of the carA gene and the control region of carAB: tandem promoters, respectively controlled by arginine and the pyrimidines, regulate the synthesis of carbamoyl-phosphate synthetase in Escherichia coli K-12. Piette, J., Nyunoya, H., Lusty, C.J., Cunin, R., Weyens, G., Crabeel, M., Charlier, D., Glansdorff, N., Piérard, A. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  20. The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum. Yu, T.W., Bai, L., Clade, D., Hoffmann, D., Toelzer, S., Trinh, K.Q., Xu, J., Moss, S.J., Leistner, E., Floss, H.G. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  21. Synthesis, intracellular transport, and processing of the precursors for mitochondrial ornithine transcarbamylase and carbamoyl-phosphate synthetase I in isolated hepatocytes. Mori, M., Morita, T., Ikeda, F., Amaya, Y., Tatibana, M., Cohen, P.P. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  22. Distribution of glutamine synthetase and carbamoyl-phosphate synthetase I in vertebrate liver. Smith, D.D., Campbell, J.W. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  23. Charomids: cosmid vectors for efficient cloning and mapping of large or small restriction fragments. Saito, I., Stark, G.R. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  24. Glutamine- and N-acetyl-L-glutamate-dependent carbamoyl phosphate synthetase from Micropterus salmoides. Purification, properties, and inhibition by glutamine analogs. Casey, C.A., Anderson, P.M. J. Biol. Chem. (1983) [Pubmed]
  25. Nucleotide sequence and tissue-specific expression of the multifunctional protein carbamoyl-phosphate synthetase-aspartate transcarbamoylase-dihydroorotase (CAD) mRNA in Squalus acanthias. Hong, J., Salo, W.L., Anderson, P.M. J. Biol. Chem. (1995) [Pubmed]
  26. Structural basis for ordered substrate binding and cooperativity in aspartate transcarbamoylase. Wang, J., Stieglitz, K.A., Cardia, J.P., Kantrowitz, E.R. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  27. Carboxyl-terminal sequences influence the import of mitochondrial protein precursors in vivo. Ness, S.A., Weiss, R.L. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  28. Transport of carbamyl phosphate synthetase I and ornithine transcarbamylase into mitochondria. Inhibition by rhodamine 123 and accumulation of enzyme precursors in isolated hepatocytes. Morita, T., Mori, M., Ikeda, F., Tatibana, M. J. Biol. Chem. (1982) [Pubmed]
  29. Growth-dependent regulation of mammalian pyrimidine biosynthesis by the protein kinase A and MAPK signaling cascades. Sigoillot, F.D., Evans, D.R., Guy, H.I. J. Biol. Chem. (2002) [Pubmed]
  30. Glutamine-dependent synthesis of citrulline by isolated hepatic mitochondria from Squalus acanthias. Anderson, P.M., Casey, C.A. J. Biol. Chem. (1984) [Pubmed]
  31. mSin3A/histone deacetylase 2- and PRMT5-containing Brg1 complex is involved in transcriptional repression of the Myc target gene cad. Pal, S., Yun, R., Datta, A., Lacomis, L., Erdjument-Bromage, H., Kumar, J., Tempst, P., Sif, S. Mol. Cell. Biol. (2003) [Pubmed]
  32. Requirement for the carboxyl-terminal domain of Saccharomyces cerevisiae carbamoyl-phosphate synthetase. Lim, A.L., Powers-Lee, S.G. J. Biol. Chem. (1996) [Pubmed]
  33. Prenatal diagnosis of carbamoyl phosphate synthetase I deficiency by identification of a missense mutation in CPS1. Finckh, U., Kohlschütter, A., Schäfer, H., Sperhake, K., Colombo, J.P., Gal, A. Hum. Mutat. (1998) [Pubmed]
  34. Kinetic characterization of yeast pyruvate carboxylase isozyme Pyc1 and the Pyc1 mutant, C249A. Branson, J.P., Nezic, M., Jitrapakdee, S., Wallace, J.C., Attwood, P.V. Biochemistry (2004) [Pubmed]
  35. Ornithine transcarbamylase and arginase I deficiency are responsible for diminished urea cycle function in the human hepatoblastoma cell line HepG2. Mavri-Damelin, D., Eaton, S., Damelin, L.H., Rees, M., Hodgson, H.J., Selden, C. Int. J. Biochem. Cell Biol. (2007) [Pubmed]
  36. Dissection of the functional domains of Escherichia coli carbamoyl phosphate synthetase by site-directed mutagenesis. Post, L.E., Post, D.J., Raushel, F.M. J. Biol. Chem. (1990) [Pubmed]
  37. The influence of effectors and subunit interactions on Escherichia coli carbamoyl-phosphate synthetase studied by differential scanning calorimetry. Cervera, J., Conejero-Lara, F., Ruiz-Sanz, J., Galisteo, M.L., Mateo, P.L., Lusty, C.J., Rubio, V. J. Biol. Chem. (1993) [Pubmed]
  38. Restricted passage of reaction intermediates through the ammonia tunnel of carbamoyl phosphate synthetase. Huang, X., Raushel, F.M. J. Biol. Chem. (2000) [Pubmed]
  39. Function of serine-52 and serine-80 in the catalytic mechanism of Escherichia coli aspartate transcarbamoylase. Xu, W., Kantrowitz, E.R. Biochemistry (1991) [Pubmed]
 
WikiGenes - Universities