The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Temporal and spatial control of nucleophosmin by the Ran-Crm1 complex in centrosome duplication.

Centrosome duplication is tightly controlled during faithful cell division, and unnecessary reduplication can lead to supernumerary centrosomes and multipolar spindles that are associated with most human cancer cells. In addition to nucleocytoplasmic transport, the Ran-Crm1 network is involved in regulating centrosome duplication to ensure the formation of a bipolar spindle. Here, we discover that nucleophosmin (NPM) may be a Ran-Crm1 substrate that controls centrosome duplication. NPM contains a functional nuclear export signal (NES) that is responsible for both its nucleocytoplasmic shuttling and its association with centrosomes, which are Ran-Crm1-dependent as they are sensitive to Crm1-specific nuclear export inhibition, either by leptomycin B (LMB) or by the expression of a Ran-binding protein, RanBP1. Notably, LMB treatment induces premature centrosome duplication in quiescent cells, which coincides with NPM dissociation from centrosomes. Moreover, deficiency of NPM by RNA interference results in supernumerary centrosomes, which can be reversed by reintroducing wild-type but not NES-mutated NPM. Mutation of a potential proline-dependent kinase phosphorylation site at residue 95, from threonine to aspartic acid (T95D) within the NES motif, abolishes NPM association and inhibition of centrosome duplication. Our results are consistent with the hypothesis that the Ran-Crm1 complex may promote a local enrichment of NPM on centrosomes, thereby preventing centrosome reduplication.[1]

References

  1. Temporal and spatial control of nucleophosmin by the Ran-Crm1 complex in centrosome duplication. Wang, W., Budhu, A., Forgues, M., Wang, X.W. Nat. Cell Biol. (2005) [Pubmed]
 
WikiGenes - Universities