The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

JNK/ERK-AP-1/Runx2 induction "paves the way" to cartilage load-ignited chondroblastic differentiation.

Chondro-osteogenesis and subsequently skeletal morphology are greatly influenced by mechanical loads. The exact mechanism(s) by which mechanical stimuli are transduced in chondrocytes remains obscure and appears to be equally complex with similar signal transducing systems. Here we investigated whether and to what extent the MAPK (JNK/ERK)-AP-1/Runx2 signaling pathways are engaged in this phenomenon, and assessed their involvement in the functional biology of articular cartilage. For this purpose, 14-day-old female Wistar rats were divided into 2 groups: the first group was fed hard diet (simulating physiologic temporomandibular joint (TMJ) loading), while the second group was fed soft diet (reduced TMJ loading). On day 21 (experiment initiation day - weaning day), biopsies from condyles of both groups were obtained after 6, 12 and 48 h of functional TMJ loading. Immunohistochemical methodology was employed to evaluate the expression levels of pc-Jun, c-Fos, JNK2, p-JNK, p-ERK and Runx2 due to alteration in functional load. Our data demsonstrate that the protein levels of all the aforementioned molecules were markedly increased in animals fed with the hard diet, throughout the experimental procedure. These results indicate that functional cartilage loading induces the AP-1 and Runx2 transcription factors through the JNK and ERK MAPK cascades. In as much as the above signaling mediators/effectors are considered to be crucial in the differentiation/maturation process of cartilage tissue, we pose that functional mechanical loading of condylar cartilage serves to "fine tune" chondroblastic differentiation/maturation.[1]

References

  1. JNK/ERK-AP-1/Runx2 induction "paves the way" to cartilage load-ignited chondroblastic differentiation. Papachristou, D.J., Pirttiniemi, P., Kantomaa, T., Papavassiliou, A.G., Basdra, E.K. Histochem. Cell Biol. (2005) [Pubmed]
 
WikiGenes - Universities