The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Impact of genetic background on nephropathy in diabetic mice.

With the goal of identifying optimal platforms for developing better models of diabetic nephropathy in mice, we compared renal effects of streptozotocin (STZ)-induced diabetes among five common inbred mouse strains (C57BL/6, MRL/Mp, BALB/c, DBA/2, and 129/SvEv). We also evaluated the renal consequences of chemical and genetic diabetes on the same genetic background (C57BL/6). There was a hierarchical response of blood glucose level to the STZ regimen among the strains (DBA/2 > C57BL/6 > MRL/MP > 129/SvEv > BALB/c). In all five strains, males demonstrated much more robust hyperglycemia with STZ than females. STZ-induced diabetes was associated with modest levels of albuminuria in all of the strains but was greatest in the DBA/2 strain, which also had the most marked hyperglycemia. Renal structural changes on light microscopy were limited to the development of mesangial expansion, and, while there were some apparent differences among strains in susceptibility to renal pathological changes, there was a significant positive correlation between blood glucose and the degree of mesangial expansion, suggesting that most of the variability in renal pathological abnormalities was because of differences in hyperglycemia. Although the general character of renal involvement was similar between chemical and genetic diabetes, Akita mice developed more marked hyperglycemia, elevated blood pressures, and less variability in renal structural responses. Thus, among the strains and models tested, the DBA/2 genetic background and the Akita (Ins2(+/C96Y)) model may be the most useful platforms for model development.[1]

References

  1. Impact of genetic background on nephropathy in diabetic mice. Gurley, S.B., Clare, S.E., Snow, K.P., Hu, A., Meyer, T.W., Coffman, T.M. Am. J. Physiol. Renal Physiol. (2006) [Pubmed]
 
WikiGenes - Universities