The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Diabetic Nephropathies

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Diabetic Nephropathies

 

Psychiatry related information on Diabetic Nephropathies

 

High impact information on Diabetic Nephropathies

 

Chemical compound and disease context of Diabetic Nephropathies

 

Biological context of Diabetic Nephropathies

 

Anatomical context of Diabetic Nephropathies

 

Gene context of Diabetic Nephropathies

  • Activated MAPK, in turn, may induce various functional changes of mesangial cells at least through the activation of cPLA2 and contribute to the development of diabetic nephropathy [27].
  • Recently, we showed that the overexpression of type IV collagen (Col IV), a major component of mesangial extracellular matrix, is transcriptionally regulated by Smad1 in diabetic glomerulosclerosis [28].
  • However, the phenotypic change in D-NOD cells is associated with constitutive activation of the IGF-I signaling pathways, which may participate in the development and progression of diabetic glomerulosclerosis [29].
  • The present study suggests that specific GHR blockade may present a new concept in the treatment of diabetic kidney disease [30].
  • Exposure of MC to TGF-beta, increased glucose concentrations, or cyclic mechanical strain, all causal factors in diabetic glomerulosclerosis, markedly induced the expression of CTGF transcripts, while recombinant human CTGF was able to autoinduce its own expression [31].
  • In a sex-specific sub-analysis, the variants rs979972 and rs749701 in the first intron of ACTN4 were nominally associated with diabetic nephropathy in females, with odds ratios of 1.81 (95% CI 1.18-2.79, p = 0.007) and 1.93 (95% CI 1.26-2.96, p = 0.003) respectively [32].
 

Analytical, diagnostic and therapeutic context of Diabetic Nephropathies

References

  1. Tumstatin peptide, an inhibitor of angiogenesis, prevents glomerular hypertrophy in the early stage of diabetic nephropathy. Yamamoto, Y., Maeshima, Y., Kitayama, H., Kitamura, S., Takazawa, Y., Sugiyama, H., Yamasaki, Y., Makino, H. Diabetes (2004) [Pubmed]
  2. Kidney morphology in experimental hyperglycemia. Kern, T.S., Engerman, R.L. Diabetes (1987) [Pubmed]
  3. Prevention of albuminuria by aminoguanidine or ramipril in streptozotocin-induced diabetic rats is associated with the normalization of glomerular protein kinase C. Osicka, T.M., Yu, Y., Panagiotopoulos, S., Clavant, S.P., Kiriazis, Z., Pike, R.N., Pratt, L.M., Russo, L.M., Kemp, B.E., Comper, W.D., Jerums, G. Diabetes (2000) [Pubmed]
  4. Estrogen and raloxifene, a selective estrogen receptor modulator, ameliorate renal damage in db/db mice. Chin, M., Isono, M., Isshiki, K., Araki, S., Sugimoto, T., Guo, B., Sato, H., Haneda, M., Kashiwagi, A., Koya, D. Am. J. Pathol. (2005) [Pubmed]
  5. Alterations in the expression of the alpha 3 beta 1 integrin in certain membrane domains of the glomerular epithelial cells (podocytes) in diabetes mellitus. Regoli, M., Bendayan, M. Diabetologia (1997) [Pubmed]
  6. Class benefits of AT(1) antagonists in Type 2 diabetes with nephropathy. Doggrell, S.A. Expert opinion on pharmacotherapy. (2002) [Pubmed]
  7. Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. Seaquist, E.R., Goetz, F.C., Rich, S., Barbosa, J. N. Engl. J. Med. (1989) [Pubmed]
  8. From hyperglycemia to diabetic kidney disease: the role of metabolic, hemodynamic, intracellular factors and growth factors/cytokines. Schrijvers, B.F., De Vriese, A.S., Flyvbjerg, A. Endocr. Rev. (2004) [Pubmed]
  9. Prevention of diabetic nephropathy in db/db mice with glycated albumin antagonists. A novel treatment strategy. Cohen, M.P., Sharma, K., Jin, Y., Hud, E., Wu, V.Y., Tomaszewski, J., Ziyadeh, F.N. J. Clin. Invest. (1995) [Pubmed]
  10. Stimulation of collagen gene expression and protein synthesis in murine mesangial cells by high glucose is mediated by autocrine activation of transforming growth factor-beta. Ziyadeh, F.N., Sharma, K., Ericksen, M., Wolf, G. J. Clin. Invest. (1994) [Pubmed]
  11. 3-Hydroxy-3-methylglutaryl CoA reductase inhibitors prevent high glucose-induced proliferation of mesangial cells via modulation of Rho GTPase/ p21 signaling pathway: Implications for diabetic nephropathy. Danesh, F.R., Sadeghi, M.M., Amro, N., Philips, C., Zeng, L., Lin, S., Sahai, A., Kanwar, Y.S. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  12. Decreased de novo synthesis of glomerular proteoglycans in diabetes: biochemical and autoradiographic evidence. Kanwar, Y.S., Rosenzweig, L.J., Linker, A., Jakubowski, M.L. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  13. Role of angiotensin II and bradykinin in experimental diabetic nephropathy. Functional and structural studies. Allen, T.J., Cao, Z., Youssef, S., Hulthen, U.L., Cooper, M.E. Diabetes (1997) [Pubmed]
  14. The effects of perindopril and triple therapy in a normotensive model of diabetic nephropathy. O'Brien, R.C., Cooper, M.E., Jerums, G., Doyle, A.E. Diabetes (1993) [Pubmed]
  15. Increased plasma IgA, sIgA, and C3- and IgA-containing immune complexes with renal glomerular deposits in diabetic rats. Miller, L.L., Izzo, M.J., Wemett, D., Panner, B.J., Schenk, E.A. Diabetes (1988) [Pubmed]
  16. Aliskiren, a novel renin inhibitor, is renoprotective in a model of advanced diabetic nephropathy in rats. Kelly, D.J., Zhang, Y., Moe, G., Naik, G., Gilbert, R.E. Diabetologia (2007) [Pubmed]
  17. Glomerular structure in IDDM women with low glomerular filtration rate and normal urinary albumin excretion. Lane, P.H., Steffes, M.W., Mauer, S.M. Diabetes (1992) [Pubmed]
  18. Accelerated glucose intolerance, nephropathy, and atherosclerosis in prostaglandin D2 synthase knock-out mice. Ragolia, L., Palaia, T., Hall, C.E., Maesaka, J.K., Eguchi, N., Urade, Y. J. Biol. Chem. (2005) [Pubmed]
  19. Establishment of a diabetic mouse model with progressive diabetic nephropathy. Inada, A., Nagai, K., Arai, H., Miyazaki, J., Nomura, K., Kanamori, H., Toyokuni, S., Yamada, Y., Bonner-Weir, S., Weir, G.C., Fukatsu, A., Seino, Y. Am. J. Pathol. (2005) [Pubmed]
  20. Impact of achieved blood pressure on cardiovascular outcomes in the Irbesartan Diabetic Nephropathy Trial. Berl, T., Hunsicker, L.G., Lewis, J.B., Pfeffer, M.A., Porush, J.G., Rouleau, J.L., Drury, P.L., Esmatjes, E., Hricik, D., Pohl, M., Raz, I., Vanhille, P., Wiegmann, T.B., Wolfe, B.M., Locatelli, F., Goldhaber, S.Z., Lewis, E.J. J. Am. Soc. Nephrol. (2005) [Pubmed]
  21. High glucose-induced intercellular adhesion molecule-1 (ICAM-1) expression through an osmotic effect in rat mesangial cells is PKC-NF-kappa B-dependent. Park, C.W., Kim, J.H., Lee, J.H., Kim, Y.S., Ahn, H.J., Shin, Y.S., Kim, S.Y., Choi, E.J., Chang, Y.S., Bang, B.K., Lee, J.W. Diabetologia (2000) [Pubmed]
  22. RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy. Wendt, T.M., Tanji, N., Guo, J., Kislinger, T.R., Qu, W., Lu, Y., Bucciarelli, L.G., Rong, L.L., Moser, B., Markowitz, G.S., Stein, G., Bierhaus, A., Liliensiek, B., Arnold, B., Nawroth, P.P., Stern, D.M., D'Agati, V.D., Schmidt, A.M. Am. J. Pathol. (2003) [Pubmed]
  23. The nature of basal lamina alterations in human diabetic glomerulosclerosis. Huang, T.W. Am. J. Pathol. (1980) [Pubmed]
  24. Induction of aldose reductase expression in rat kidney mesangial cells and Chinese hamster ovary cells under hypertonic conditions. Kaneko, M., Carper, D., Nishimura, C., Millen, J., Bock, M., Hohman, T.C. Exp. Cell Res. (1990) [Pubmed]
  25. Podocyte injury underlies the progression of focal segmental glomerulosclerosis in the fa/fa Zucker rat. Gassler, N., Elger, M., Kränzlin, B., Kriz, W., Gretz, N., Hähnel, B., Hosser, H., Hartmann, I. Kidney Int. (2001) [Pubmed]
  26. The role of macrophages in diabetic glomerulosclerosis. Furuta, T., Saito, T., Ootaka, T., Soma, J., Obara, K., Abe, K., Yoshinaga, K. Am. J. Kidney Dis. (1993) [Pubmed]
  27. Mitogen-activated protein kinase cascade is activated in glomeruli of diabetic rats and glomerular mesangial cells cultured under high glucose conditions. Haneda, M., Araki, S., Togawa, M., Sugimoto, T., Isono, M., Kikkawa, R. Diabetes (1997) [Pubmed]
  28. Activation of STAT3/Smad1 is a key signaling pathway for progression to glomerulosclerosis in experimental glomerulonephritis. Takahashi, T., Abe, H., Arai, H., Matsubara, T., Nagai, K., Matsuura, M., Iehara, N., Yokode, M., Nishikawa, S., Kita, T., Doi, T. J. Biol. Chem. (2005) [Pubmed]
  29. Autocrine activation of the IGF-I signaling pathway in mesangial cells isolated from diabetic NOD mice. Tack, I., Elliot, S.J., Potier, M., Rivera, A., Striker, G.E., Striker, L.J. Diabetes (2002) [Pubmed]
  30. Inhibitory effect of a growth hormone receptor antagonist (G120K-PEG) on renal enlargement, glomerular hypertrophy, and urinary albumin excretion in experimental diabetes in mice. Flyvbjerg, A., Bennett, W.F., Rasch, R., Kopchick, J.J., Scarlett, J.A. Diabetes (1999) [Pubmed]
  31. Regulation of connective tissue growth factor activity in cultured rat mesangial cells and its expression in experimental diabetic glomerulosclerosis. Riser, B.L., Denichilo, M., Cortes, P., Baker, C., Grondin, J.M., Yee, J., Narins, R.G. J. Am. Soc. Nephrol. (2000) [Pubmed]
  32. Association analysis of podocyte slit diaphragm genes as candidates for diabetic nephropathy. Ihalmo, P., Wessman, M., Kaunisto, M.A., Kilpikari, R., Parkkonen, M., Forsblom, C., Holthöfer, H., Groop, P.H. Diabetologia (2008) [Pubmed]
  33. Metabolic control of prevention of nephropathy by 2-tetradecylglycidate in the diabetic mouse (db/db). Lee, S.M., Tutwiler, G., Bressler, R., Kircher, C.H. Diabetes (1982) [Pubmed]
  34. F(2)-isoprostanes mediate high glucose-induced TGF-beta synthesis and glomerular proteinuria in experimental type I diabetes. Montero, A., Munger, K.A., Khan, R.Z., Valdivielso, J.M., Morrow, J.D., Guasch, A., Ziyadeh, F.N., Badr, K.F. Kidney Int. (2000) [Pubmed]
  35. Changes in the expression of nephrin gene and protein in experimental diabetic nephropathy. Aaltonen, P., Luimula, P., Aström, E., Palmen, T., Grönholm, T., Palojoki, E., Jaakkola, I., Ahola, H., Tikkanen, I., Holthöfer, H. Lab. Invest. (2001) [Pubmed]
  36. Increased expression of heparin binding epidermal growth-factor-like growth factor mRNA in the kidney of streptozotocin-induced diabetic rats. Lee, Y.J., Shin, S.J., Lin, S.R., Tan, M.S., Tsai, J.H. Biochem. Biophys. Res. Commun. (1995) [Pubmed]
  37. Green tea polyphenols and dietary fibre protect against kidney damage in rats with diabetic nephropathy. Yokozawa, T., Nakagawa, T., Oya, T., Okubo, T., Juneja, L.R. J. Pharm. Pharmacol. (2005) [Pubmed]
 
WikiGenes - Universities