The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

Bglu1  -  blood glucose level 1

Mus musculus

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Bglu1


Psychiatry related information on Bglu1


High impact information on Bglu1


Chemical compound and disease context of Bglu1


Biological context of Bglu1


Anatomical context of Bglu1


Associations of Bglu1 with chemical compounds


Regulatory relationships of Bglu1

  • Not only the dose-response curve of AM but also the time-course of the blood glucose level (expressed as % of pre-treatment value) following 320 mg/kg of AM were almost identical between +/+, STZ-treated +/+ and STZ-treated db/db mice [31].

Other interactions of Bglu1


Analytical, diagnostic and therapeutic context of Bglu1


  1. Vanadate normalizes hyperglycemia in two mouse models of non-insulin-dependent diabetes mellitus. Meyerovitch, J., Rothenberg, P., Shechter, Y., Bonner-Weir, S., Kahn, C.R. J. Clin. Invest. (1991) [Pubmed]
  2. Hyperglycemia-induced B cell toxicity. The fate of pancreatic islets transplanted into diabetic mice is dependent on their genetic background. Korsgren, O., Jansson, L., Sandler, S., Andersson, A. J. Clin. Invest. (1990) [Pubmed]
  3. Glycemic modulation of tumor tolerance in a mouse model of breast cancer. Santisteban, G.A., Ely, J.T., Hamel, E.E., Read, D.H., Kozawa, S.M. Biochem. Biophys. Res. Commun. (1985) [Pubmed]
  4. Cytoprotection of PEG-modified adult porcine pancreatic islets for improved xenotransplantation. Xie, D., Smyth, C.A., Eckstein, C., Bilbao, G., Mays, J., Eckhoff, D.E., Contreras, J.L. Biomaterials (2005) [Pubmed]
  5. Alleviation of IgE-mediated immune reactions in hypoinsulinaemic and hyperglycaemic mice. Ptak, W., Rewicka, M., Strzyzewska, J., Kollat, M. Clin. Exp. Immunol. (1983) [Pubmed]
  6. Effects of different doses of glucose and insulin on morphine state-dependent memory of passive avoidance in mice. Jafari, M.R., Zarrindast, M.R., Djahanguiri, B. Psychopharmacology (Berl.) (2004) [Pubmed]
  7. Corticotropin-releasing factor receptor 1-deficient mice do not develop postoperative gastric ileus. Luckey, A., Wang, L., Jamieson, P.M., Basa, N.R., Million, M., Czimmer, J., Vale, W., Taché, Y. Gastroenterology (2003) [Pubmed]
  8. Disruption of Sur2-containing K(ATP) channels enhances insulin-stimulated glucose uptake in skeletal muscle. Chutkow, W.A., Samuel, V., Hansen, P.A., Pu, J., Valdivia, C.R., Makielski, J.C., Burant, C.F. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  9. Correlation between mammary tumor and blood glucose, serum insulin, and free fatty acids in mice. Iguchi, T., Takasugi, N., Nishimura, N., Kusunoki, S. Cancer Res. (1989) [Pubmed]
  10. Pancreatic-specific inactivation of IGF-I gene causes enlarged pancreatic islets and significant resistance to diabetes. Lu, Y., Herrera, P.L., Guo, Y., Sun, D., Tang, Z., LeRoith, D., Liu, J.L. Diabetes (2004) [Pubmed]
  11. Amelioration of glucose tolerance by hepatic inhibition of nuclear factor kappaB in db/db mice. Tamura, Y., Ogihara, T., Uchida, T., Ikeda, F., Kumashiro, N., Nomiyama, T., Sato, F., Hirose, T., Tanaka, Y., Mochizuki, H., Kawamori, R., Watada, H. Diabetologia (2007) [Pubmed]
  12. Prolonged glucose normalization of streptozotocin-induced diabetic mice by transplantation of rat islets coencapsulated with crosslinked hemoglobin. Chae, S.Y., Kim, Y.Y., Kim, S.W., Bae, Y.H. Transplantation (2004) [Pubmed]
  13. Outcome of subcutaneous islet transplantation improved by polymer device. Juang, J.H., Bonner-Weir, S., Ogawa, Y., Vacanti, J.P., Weir, G.C. Transplantation (1996) [Pubmed]
  14. Reduction of diabetes-induced renal oxidative stress by a cantaloupe melon extract/gliadin biopolymers, oxykine, in mice. Naito, Y., Akagiri, S., Uchiyama, K., Kokura, S., Yoshida, N., Hasegawa, G., Nakamura, N., Ichikawa, H., Toyokuni, S., Ijichi, T., Yoshikawa, T. Biofactors (2005) [Pubmed]
  15. Increase in the activities of plasma pseudocholinesterase dependent on the blood glucose level and its relation to the hypersensitivity to acetylcholine in striated muscles of KK-CAy mice with diabetes. Matsui, T., Kimura, I., Kimura, M. Jpn. J. Pharmacol. (1990) [Pubmed]
  16. High-fat diet-induced hyperglycemia and obesity in mice: differential effects of dietary oils. Ikemoto, S., Takahashi, M., Tsunoda, N., Maruyama, K., Itakura, H., Ezaki, O. Metab. Clin. Exp. (1996) [Pubmed]
  17. Diabetic state-induced modification of resting membrane potential and conductance in diaphragm muscle of alloxan and diabetic KK-CAy mice. Kimura, M., Kimura, I., Nakamura, T., Nojima, H. Diabetologia (1988) [Pubmed]
  18. The influence of frequent and excessive intake of glucose on microvascular aging in healthy mice. Yamada, S., Ohkubo, C. Microcirculation (New York, N.Y. : 1994) (1999) [Pubmed]
  19. The pretreatment effect of chemical skin penetration enhancers in transdermal drug delivery using iontophoresis. Choi, E.H., Lee, S.H., Ahn, S.K., Hwang, S.M. Skin Pharmacol. Appl. Skin Physiol. (1999) [Pubmed]
  20. Intramuscular injection of naked plasmid DNA encoding human preproinsulin gene in streptozotocin-diabetes mice results in a significant reduction of blood glucose level. Wang, L.Y., Sun, W., Chen, M.Z., Wang, X. Sheng li xue bao : [Acta physiologica Sinica]. (2003) [Pubmed]
  21. Phagocytosis and chemotaxis of macrophages from normal and diabetic mice. Peterson, E.M., Ambe, N.A., Valdes, I., Arquilla, E.R. Acta diabetologica latina. (1981) [Pubmed]
  22. Amelioration of streptozotocin-induced diabetes in mice using human islet cells derived from long-term culture in vitro. Zhao, M., Christie, M.R., Heaton, N., George, S., Amiel, S., Cai Huang, G. Transplantation (2002) [Pubmed]
  23. A licorice ethanolic extract with peroxisome proliferator-activated receptor-gamma ligand-binding activity affects diabetes in KK-Ay mice, abdominal obesity in diet-induced obese C57BL mice and hypertension in spontaneously hypertensive rats. Mae, T., Kishida, H., Nishiyama, T., Tsukagawa, M., Konishi, E., Kuroda, M., Mimaki, Y., Sashida, Y., Takahashi, K., Kawada, T., Nakagawa, K., Kitahara, M. J. Nutr. (2003) [Pubmed]
  24. Effect of triiodothyronine on muscle cell differentiation and blood glucose level in hyperglycemic KK mice. Shimokawa, T., Kato, M., Shioduka, K., Irie, J., Ezaki, O. Biochem. Biophys. Res. Commun. (1997) [Pubmed]
  25. Licorice flavonoids suppress abdominal fat accumulation and increase in blood glucose level in obese diabetic KK-A(y) mice. Nakagawa, K., Kishida, H., Arai, N., Nishiyama, T., Mae, T. Biol. Pharm. Bull. (2004) [Pubmed]
  26. Syntheses and hypoglycemic activities of ethyl esters and various amides of omega-guanidino fatty acids with medium chain length. Weitzel, G., Fretzdorff, A.M., Stock, W. Hoppe-Seyler's Z. Physiol. Chem. (1980) [Pubmed]
  27. The low dose streptozotocin murine model of type 1 (insulin-dependent) diabetes mellitus: studies in vivo and in vitro of the modulating effect of sex hormones. Kromann, H., Christy, M., Lernmark, A., Nedergaard, M., Nerup, J. Diabetologia (1982) [Pubmed]
  28. Impact of genetic background on nephropathy in diabetic mice. Gurley, S.B., Clare, S.E., Snow, K.P., Hu, A., Meyer, T.W., Coffman, T.M. Am. J. Physiol. Renal Physiol. (2006) [Pubmed]
  29. Imaging with 99mTc ECDG targeted at the multifunctional glucose transport system: feasibility study with rodents. Yang, D.J., Kim, C.G., Schechter, N.R., Azhdarinia, A., Yu, D.F., Oh, C.S., Bryant, J.L., Won, J.J., Kim, E.E., Podoloff, D.A. Radiology. (2003) [Pubmed]
  30. The role of the blood glucose level in determining voluntary ethanol consumption in the LACG and diabetogenic C57BL strains of mice. Connelly, D.M., Unwin, J.W., Taberner, P.V. Biochem. Pharmacol. (1983) [Pubmed]
  31. Differential hypoglycemic effect of 2,5-anhydro-D-mannitol, a putative gluconeogenesis inhibitor, in genetically diabetic (db/db) and streptozotocin-induced diabetic mice. Kodama, H., Fujita, M., Yamaguchi, I. Jpn. J. Pharmacol. (1994) [Pubmed]
  32. Brain-derived neurotrophic factor reduces blood glucose level in obese diabetic mice but not in normal mice. Ono, M., Ichihara, J., Nonomura, T., Itakura, Y., Taiji, M., Nakayama, C., Noguchi, H. Biochem. Biophys. Res. Commun. (1997) [Pubmed]
  33. The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice. Jung, U.J., Lee, M.K., Jeong, K.S., Choi, M.S. J. Nutr. (2004) [Pubmed]
  34. Inhibition of diabetes in NOD mice by idiotypic induction of SLE. Krause, I., Tomer, Y., Elias, D., Blank, M., Gilburd, B., Cohen, I.R., Shoenfeld, Y. J. Autoimmun. (1999) [Pubmed]
  35. The effects of parabiosis on serum and kidney glycosidase activities in spontaneously diabetic mice. Fushimi, H., Nonaka, K., Tarui, S., Tochino, Y., Kanaya, H. Diabetologia (1980) [Pubmed]
  36. New sources of dietary fibre. Madar, Z. International journal of obesity. (1987) [Pubmed]
  37. Intravascular insulin gene delivery as potential therapeutic intervention in diabetes mellitus. Yasutomi, K., Itokawa, Y., Asada, H., Kishida, T., Cui, F.D., Ohashi, S., Gojo, S., Ueda, Y., Kubo, T., Yamagishi, H., Imanishi, J., Takeuchi, T., Mazda, O. Biochem. Biophys. Res. Commun. (2003) [Pubmed]
  38. Effect of thiamine and thiamine levels on experimental alloxan induced diabetes mellitus. Hobara, R., Kato, H., Sakamoto, K. Jpn. J. Pharmacol. (1983) [Pubmed]
  39. A family of insulinomimetic zinc(II) complexes of amino ligands with Zn(Nn) (n=3 and 4) coordination modes. Yoshikawa, Y., Kondo, M., Sakurai, H., Kojima, Y. J. Inorg. Biochem. (2005) [Pubmed]
WikiGenes - Universities