The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The concentrations of calcium buffering proteins in mammalian cochlear hair cells.

Calcium buffers are important for shaping and localizing cytoplasmic Ca2+ transients in neurons. We measured the concentrations of the four main calcium-buffering proteins (calbindin-D28k, calretinin, parvalbumin-alpha, and parvalbumin-beta) in rat cochlear hair cells in which Ca2+ signaling is a central element of fast transduction and synaptic transmission. The proteins were quantified by calibrating immunogold tissue counts against gels containing known amounts of each protein, and the method was verified by application to Purkinje cells in which independent estimates exist for some of the protein concentrations. The results showed that, in animals with fully developed hearing, inner hair cells had 110 of the proteinaceous calcium buffer of outer hair cells in which the cell body contained parvalbumin-beta (oncomodulin) and calbindin-D28k at levels equivalent to 5 mm calcium-binding sites. Both proteins were partially excluded from the hair bundles, which may permit fast unbuffered Ca2+ regulation of the mechanotransducer channels. The sum of the calcium buffer concentrations decreased in inner hair cells and increased in outer hair cells as the cells developed their adult properties during cochlear maturation. The results suggest that Ca2+ has distinct roles in the two types of hair cell, reflecting their different functions in auditory transduction. Ca2+ is used in inner hair cells primarily for fast phase-locked synaptic transmission, whereas Ca2+ may be involved in regulating the motor capability underlying cochlear amplification of the outer hair cell. The high concentration of calcium buffer in outer hair cells, similar only to skeletal muscle, may protect against deleterious consequences of Ca2+ loading after acoustic overstimulation.[1]

References

  1. The concentrations of calcium buffering proteins in mammalian cochlear hair cells. Hackney, C.M., Mahendrasingam, S., Penn, A., Fettiplace, R. J. Neurosci. (2005) [Pubmed]
 
WikiGenes - Universities