The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Pvalb  -  parvalbumin

Rattus norvegicus

Synonyms: PALB1, Parvalbumin alpha, Pva
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Pvalb

  • The apparent decrease in the number of PV and CR immunoreactive hilar neurons was correlated with the duration of the SE and was most extensive in rats with a progressive form of epilepsy [1].
  • These studies provide the first detailed characterization of the distribution of vulnerable neurons within the NRT after experimental ischemia and suggest that immunocytochemistry of PV is a useful tool for quantitative analysis of the lesion for use in further experiments to elucidate the mechanisms of selective vulnerability of the NRT [2].
  • Loss of parvalbumin immunoreactivity defines selectively vulnerable thalamic reticular nucleus neurons following cardiac arrest in the rat [2].
  • PV appeared in the outer nuclear layer at birth (P0) and, by P7, was observed in the ganglion cell layer, amacrine cells, and horizontal cells [3].
  • Immunoreactive staining for the calcium-binding proteins calbindin and parvalbumin in lower brainstem auditory nuclei shows abnormalities in areas susceptible to the effects of hyperbilirubinemia and provides a sensitive new way to assess bilirubin toxicity in the auditory system [4].

Psychiatry related information on Pvalb


High impact information on Pvalb


Chemical compound and disease context of Pvalb


Biological context of Pvalb


Anatomical context of Pvalb

  • Mixed-effects statistical models, adapted specifically for these analyses, indicated that perturbations of amygdalar inputs to the hippocampus significantly alter the drive that hippocampal PVB-, CR-, and CB-IR neurons within the dentate gyrus/CA4 region exercise on CCK-IR terminals within the same region as well as in CA3-1 [21].
  • The numerical density (Nd) of somata showing immunoreactivity (IR) for parvalbumin (PVB) was decreased in dentate gyrus (DG) and the CA4-2 region, while that of calretinin (CR)-IR was decreased in DG and CA2 [21].
  • PV-labelled neurones had round somata (diameters between 6 and 10 microm) and were bi-tufted, with beaded dendrites [22].
  • Parvalbumin-positive neurons constituted 19-43% of GABA-immunoreactive neurons in the basolateral amygdala, depending on the nucleus [23].
  • Parvalbumin, calbindin, or calretinin in cortically projecting and GABAergic, cholinergic, or glutamatergic basal forebrain neurons of the rat [24].

Associations of Pvalb with chemical compounds

  • The results show that the majority of PV (100%), SOM (89.8%) and CR (93.9%) staining neurons are GABA positive [25].
  • Parvalbumin interneurons showed significant reductions in the strata oriens and pyramidale of CA1, the stratum pyramidale of CA3, and the dentate hilus [26].
  • Combined dual-immunofluorescence and confocal microscopy revealed that somatodendritic alpha4 nicotinic acetylcholine receptors colocalized with cortical neurons stained positively for CR, PV or CB [27].
  • We tested in an animal model if redox imbalance (GSH deficit and excess extracellular dopamine) during postnatal development would affect PV-expressing neurons [28].
  • QA produced degeneration of numerous medium-sized neurons, but not those enriched in Bcl-2-i. Many Bcl-2-i-enriched interneurons including those with CAT+ and PARV+ survived QA injection, while medium-sized neurons labeled for calbindin D-28K (CAL D-28+) did not [29].

Physical interactions of Pvalb

  • These data indicate that PA and CA antisera identify two cell populations in whisker-related regions of the V brainstem complex and that PA cells are somatotopically patterned in PrV, SpI, and SpC [30].
  • 5-HT1A receptor-immunoreactive GABAergic cells in the MSDB were also demonstrated to contain the calcium-binding protein parvalbumin, a marker for septohippocampal projecting GABAergic neurons [31].

Co-localisations of Pvalb


Regulatory relationships of Pvalb

  • In layers II to IV of the barrel cortex most PARV-immunoreactive neurons are likely to derive from a subpopulation of CALB-immunoreactive neurons whose CALB immunoreactivity ceases when they begin to express PARV between the second and third postnatal weeks [36].
  • Calretinin-containing neurons which co-express parvalbumin and calbindin D-28k in the rat spinal and cranial sensory ganglia; triple immunofluorescence study [37].
  • Our results show that NT-3 promotes the survival of a DRG subpopulation of which over 75% expresses parvalbumin (PV) [38].
  • More than 90% of the parvalbumin-positive neurons in the hippocampal formation strongly expressed the DOR gene [39].
  • Within the infralimbic, agranular insular, primary motor, parietal association, perirhinal, and lateral entorhinal cortices, an average of 95.6% +/- 0.8% (intact) and 94.5% +/- 1.4% (ovx) of all ER-beta-immunoreactive cells coexpress parvalbumin, and this proportion is strikingly similar across these diverse cortical regions [33].

Other interactions of Pvalb

  • All of these are PV, CB, SOM and NOS negative [25].
  • No coexistence of NC with PV, SOM or NPY was found in any hippocampal region [40].
  • From dual immunostaining for the CBPs and glutamic acid decarboxylase (GAD), it appeared that the vast majority (>90%) of the Parv(+) group was GAD(+), whereas only a small minority (<10%) of the Calb(+) or Calret(+) group was GAD(+) [24].
  • Despite the common feature of low GluR-B subunit expression, PV- and CR-containing interneurons differ with respect to the density and combination of their expressed AMPAR subunits [41].
  • The majority of these PV-positive NT-3-dependent DRG neurons were large 'type A' neurons [38].

Analytical, diagnostic and therapeutic context of Pvalb

  • Parvalbumin and calbindin immunocytochemistry reveal functionally distinct cell groups and vibrissa-related patterns in the trigeminal brainstem complex of the adult rat [30].
  • In fact, double in situ hybridization analysis confirmed that most NT-3+ neurons also expressed NGF mRNA, indicating coexpression of both neurotrophins in subpopulations of PARV+ and CALR+ neurons [42].
  • In the present study, immunofluorescence histochemical double staining for PKCgamma and CB, CR or PV was performed in the rat medullary dorsal horn [43].
  • Electron microscopy showed that the immunoreactive products of calbindin or parvalbumin were mostly in the dendrites or cell bodies [44].
  • RNA amplification following single cell dissection of immunohistochemically labeled cells from layers II to VI revealed that PV cells, in contrast to CR cells, express the m2 muscarinic receptor (M2AchR) protein [45].


  1. Progression of temporal lobe epilepsy in the rat is associated with immunocytochemical changes in inhibitory interneurons in specific regions of the hippocampal formation. van Vliet, E.A., Aronica, E., Tolner, E.A., Lopes da Silva, F.H., Gorter, J.A. Exp. Neurol. (2004) [Pubmed]
  2. Loss of parvalbumin immunoreactivity defines selectively vulnerable thalamic reticular nucleus neurons following cardiac arrest in the rat. Kawai, K., Nowak, T.S., Klatzo, I. Acta Neuropathol. (1995) [Pubmed]
  3. Calbindin-D 28 kD and parvalbumin in the horizontal cells of rat retina during development. Oguni, M., Setogawa, T., Shinohara, H., Kato, K. Curr. Eye Res. (1998) [Pubmed]
  4. Changes in calcium-binding protein expression in the auditory brainstem nuclei of the jaundiced Gunn rat. Spencer, R.F., Shaia, W.T., Gleason, A.T., Sismanis, A., Shapiro, S.M. Hear. Res. (2002) [Pubmed]
  5. Decrease in parvalbumin-expressing neurons in the hippocampus and increased phencyclidine-induced locomotor activity in the rat methylazoxymethanol (MAM) model of schizophrenia. Penschuck, S., Flagstad, P., Didriksen, M., Leist, M., Michael-Titus, A.T. Eur. J. Neurosci. (2006) [Pubmed]
  6. Fos induction in cortical interneurons during spontaneous wakefulness of rats in a familiar or enriched environment. Bertini, G., Peng, Z.C., Fabene, P.F., Grassi-Zucconi, G., Bentivoglio, M. Brain Res. Bull. (2002) [Pubmed]
  7. Immunoreactive parvalbumin concentrations in parahippocampal gyrus decrease in patients with Alzheimer's disease. Inaguma, Y., Shinohara, H., Inagaki, T., Kato, K. J. Neurol. Sci. (1992) [Pubmed]
  8. Protection of dentate hilar cells from prolonged stimulation by intracellular calcium chelation. Scharfman, H.E., Schwartzkroin, P.A. Science (1989) [Pubmed]
  9. Parvalbumin in most gamma-aminobutyric acid-containing neurons of the rat cerebral cortex. Celio, M.R. Science (1986) [Pubmed]
  10. Synapse-specific plasticity and compartmentalized signaling in cerebellar stellate cells. Soler-Llavina, G.J., Sabatini, B.L. Nat. Neurosci. (2006) [Pubmed]
  11. Development of GABA and calcium binding proteins immunoreactivity in the rat hippocampus following neonatal anoxia. Dell'Anna, E., Geloso, M.C., Magarelli, M., Molinari, M. Neurosci. Lett. (1996) [Pubmed]
  12. Differential changes of calcium binding proteins in the rat striatum after kainic acid-induced seizure. Lee, J., Park, K., Lee, S., Whang, K., Kang, M., Park, C., Huh, Y. Neurosci. Lett. (2002) [Pubmed]
  13. Parvalbumin is reduced in the peripheral nerves of diabetic rats. Endo, T., Onaya, T. J. Clin. Invest. (1986) [Pubmed]
  14. Abrogation of ventricular arrhythmias in a model of ischemia and reperfusion by targeting myocardial calcium cycling. del Monte, F., Lebeche, D., Guerrero, J.L., Tsuji, T., Doye, A.A., Gwathmey, J.K., Hajjar, R.J. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  15. Transforming growth factor-beta1 increases albumin permeability of isolated rat glomeruli via hydroxyl radicals. Sharma, R., Khanna, A., Sharma, M., Savin, V.J. Kidney Int. (2000) [Pubmed]
  16. Expression of NGF and NT3 mRNAs in hippocampal interneurons innervated by the GABAergic septohippocampal pathway. Rocamora, N., Pascual, M., Acsàdy, L., de Lecea, L., Freund, T.F., Soriano, E. J. Neurosci. (1996) [Pubmed]
  17. Increases in the density of parvalbumin-immunoreactive neurons in anterior cingulate cortex of amphetamine-withdrawn rats: evidence for corticotropin-releasing factor in sustained elevation. Mohila, C.A., Onn, S.P. Cereb. Cortex (2005) [Pubmed]
  18. Parvalbumin is a marker of ALS-resistant motor neurons. Elliott, J.L., Snider, W.D. Neuroreport (1995) [Pubmed]
  19. Remodeling of the AB site of rat parvalbumin and oncomodulin into a canonical EF-hand. Cox, J.A., Durussel, I., Scott, D.J., Berchtold, M.W. Eur. J. Biochem. (1999) [Pubmed]
  20. Isolation of a rat parvalbumin gene and full length cDNA. Epstein, P., Means, A.R., Berchtold, M.W. J. Biol. Chem. (1986) [Pubmed]
  21. Long-term effects of amygdala GABA receptor blockade on specific subpopulations of hippocampal interneurons. Berretta, S., Lange, N., Bhattacharyya, S., Sebro, R., Garces, J., Benes, F.M. Hippocampus. (2004) [Pubmed]
  22. Neurones in the adult rat anterior medullary velum. Ibrahim, M., Menoud, P.A., Celio, M.R. J. Comp. Neurol. (2000) [Pubmed]
  23. Colocalization of calcium-binding proteins and GABA in neurons of the rat basolateral amygdala. McDonald, A.J., Mascagni, F. Neuroscience (2001) [Pubmed]
  24. Parvalbumin, calbindin, or calretinin in cortically projecting and GABAergic, cholinergic, or glutamatergic basal forebrain neurons of the rat. Gritti, I., Manns, I.D., Mainville, L., Jones, B.E. J. Comp. Neurol. (2003) [Pubmed]
  25. Three distinct families of GABAergic neurons in rat visual cortex. Gonchar, Y., Burkhalter, A. Cereb. Cortex (1997) [Pubmed]
  26. Hippocampal interneurons expressing glutamic acid decarboxylase and calcium-binding proteins decrease with aging in Fischer 344 rats. Shetty, A.K., Turner, D.A. J. Comp. Neurol. (1998) [Pubmed]
  27. Chronic nicotine exposure during adolescence differentially influences calcium-binding proteins in rat anterior cingulate cortex. Liu, J.J., Mohila, C.A., Gong, Y., Govindarajan, N., Onn, S.P. Eur. J. Neurosci. (2005) [Pubmed]
  28. Glutathione deficit during development induces anomalies in the rat anterior cingulate GABAergic neurons: Relevance to schizophrenia. Cabungcal, J.H., Nicolas, D., Kraftsik, R., Cuénod, M., Do, K.Q., Hornung, J.P. Neurobiol. Dis. (2006) [Pubmed]
  29. Susceptibility of striatal neurons to excitotoxic injury correlates with basal levels of Bcl-2 and the induction of P53 and c-Myc immunoreactivity. Liang, Z.Q., Wang, X.X., Wang, Y., Chuang, D.M., DiFiglia, M., Chase, T.N., Qin, Z.H. Neurobiol. Dis. (2005) [Pubmed]
  30. Parvalbumin and calbindin immunocytochemistry reveal functionally distinct cell groups and vibrissa-related patterns in the trigeminal brainstem complex of the adult rat. Bennett-Clarke, C.A., Chiaia, N.L., Jacquin, M.F., Rhoades, R.W. J. Comp. Neurol. (1992) [Pubmed]
  31. 5-HT1A receptor mRNA and immunoreactivity in the rat medial septum/diagonal band of Broca-relationships to GABAergic and cholinergic neurons. Lüttgen, M., Ogren, S.O., Meister, B. J. Chem. Neuroanat. (2005) [Pubmed]
  32. Calcium-binding proteins map the postnatal development of rat vestibular nuclei and their vestibular and cerebellar projections. Puyal, J., Devau, G., Venteo, S., Sans, N., Raymond, J. J. Comp. Neurol. (2002) [Pubmed]
  33. Estrogen receptor-beta colocalizes extensively with parvalbumin-labeled inhibitory neurons in the cortex, amygdala, basal forebrain, and hippocampal formation of intact and ovariectomized adult rats. Blurton-Jones, M., Tuszynski, M.H. J. Comp. Neurol. (2002) [Pubmed]
  34. Glycinergic synapses in the rod pathway of the rat retina: cone bipolar cells express the alpha 1 subunit of the glycine receptor. Sassoè-Pognetto, M., Wässle, H., Grünert, U. J. Neurosci. (1994) [Pubmed]
  35. Distribution of the receptor-anchoring protein gephyrin in the rat dentate gyrus and changes following entorhinal cortex lesion. Simbürger, E., Plaschke, M., Kirsch, J., Nitsch, R. Cereb. Cortex (2000) [Pubmed]
  36. Thalamic and basal forebrain afferents modulate the development of parvalbumin and calbindin D28k immunoreactivity in the barrel cortex of the rat. Alcantara, S., Soriano, E., Ferrer, I. Eur. J. Neurosci. (1996) [Pubmed]
  37. Calretinin-containing neurons which co-express parvalbumin and calbindin D-28k in the rat spinal and cranial sensory ganglia; triple immunofluorescence study. Ichikawa, H., Jin, H.W., Terayama, R., Yamaai, T., Jacobowitz, D.M., Sugimoto, T. Brain Res. (2005) [Pubmed]
  38. Expression of calcium-binding proteins in the neurotrophin-3-dependent subpopulation of rat embryonic dorsal root ganglion cells in culture. Copray, J.C., Mantingh-Otter, I.J., Brouwer, N. Brain Res. Dev. Brain Res. (1994) [Pubmed]
  39. Neuronal types expressing mu- and delta-opioid receptor mRNA in the rat hippocampal formation. Stumm, R.K., Zhou, C., Schulz, S., Höllt, V. J. Comp. Neurol. (2004) [Pubmed]
  40. Neurocalcin-immunoreactive cells in the rat hippocampus are GABAergic interneurons. Martínez-Guijarro, F.J., Briñón, J.G., Blasco-Ibáñez, J.M., Okazaki, K., Hidaka, H., Alonso, J.R. Hippocampus. (1998) [Pubmed]
  41. AMPA receptor subunits are differentially expressed in parvalbumin- and calretinin-positive neurons of the rat hippocampus. Catania, M.V., Bellomo, M., Giuffrida, R., Giuffrida, R., Stella, A.M., Albanese, V. Eur. J. Neurosci. (1998) [Pubmed]
  42. Expression of nerve growth factor and neurotrophin-3 mRNAs in hippocampal interneurons: morphological characterization, levels of expression, and colocalization of nerve growth factor and neurotrophin-3. Pascual, M., Rocamora, N., Acsády, L., Freund, T.F., Soriano, E. J. Comp. Neurol. (1998) [Pubmed]
  43. Co-existence of protein kinase C gamma and calcium-binding proteins in neurons of the medullary dorsal horn of the rat. Ni, T.S., Wu, S.X., Li, Y.Q. Neurosignals (2002) [Pubmed]
  44. Calcium-binding proteins calbindin and parvalbumin in the superficial dorsal horn of the rat spinal cord. Yoshida, S., Senba, E., Kubota, Y., Hagihira, S., Yoshiya, I., Emson, P.C., Tohyama, M. Neuroscience (1990) [Pubmed]
  45. Localization of M2 muscarinic receptor protein in parvalbumin and calretinin containing cells of the adult rat entorhinal cortex using two complementary methods. Chaudhuri, J.D., Hiltunen, M., Nykänen, M., Ylä-Herttuala, S., Soininen, H., Miettinen, R. Neuroscience (2005) [Pubmed]
WikiGenes - Universities