The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

LOXL null mice demonstrate selective dentate structural changes but maintain dentate granule cell and CA1 pyramidal cell potentiation in the hippocampus.

Lysyl oxidase-like protein (LOXL), part of the lysyl oxidase copper-dependent amine oxidase family, is expressed in the extracellular matrix and in the nucleus. It likely plays a role in cross-linking collagen and elastin, possibly modulating cellular functions. Immunohistochemical studies show the presence of LOXL in the pyramidal cell layer of the hippocampus; and in this study, we report that cells in the granule cell layer have significantly smaller somas in LOXL -/- compared to LOXL +/+ mice. In addition we tested the hypothesis that these structural alterations in the dentate granule layer were associated with synaptic efficacy and thus muted long-term potentiation in mice lacking the protein. Electrical recordings were obtained in 300-mum hippocampal slices in dentate and CA1 pyramidal cell layers in age-matched wild type and LOXL null mice. Potentiation in the CA1 cell layer of 10 LOXL -/- and 8 LOXL +/+ mice was 191.0+/-9.3% and 181.6+/-9.1%, respectively (mean+/-S.E.M.). Dentate potentiation was 120.8+/-7.0% and 121.0+/-3.4% in 11 LOXL -/- and 11 LOXL +/+ mice, respectively. No phenotypic difference in potentiation of population spike amplitude (or in EPSP slope) in either layer was observed. Thus, contrary to expectation, structural changes in the hippocampus of LOXL -/- mice did not affect synaptic remodeling in a manner that impaired the establishment of LTP.[1]

References

  1. LOXL null mice demonstrate selective dentate structural changes but maintain dentate granule cell and CA1 pyramidal cell potentiation in the hippocampus. Bronson, N.W., Hamilton, J.S., Han, M., Li, P.A., Hornstra, I., Horowitz, J.M., Horwitz, B.A. Neurosci. Lett. (2005) [Pubmed]
 
WikiGenes - Universities