Ionic mechanism of forskolin-induced liquid secretion by porcine bronchi.
cAMP-elevating agents such as forskolin and vasoactive intestinal peptide induce liquid secretion by tracheobronchial submucosal glands. This pathway is thought to be CFTR dependent and thus defective in cystic fibrosis; however, the ionic mechanism that drives this secretion process is incompletely understood. To better define this mechanism, we studied the effects of ion transport inhibitors on the forskolin-induced liquid secretion response (Jv) of porcine distal bronchi. The forskolin-induced Jv was driven by a combination of bumetanide-sensitive Cl- secretion and DIDS-sensitive HCO3- secretion. When Cl- secretion was inhibited with bumetanide, Na+/H+ exchange-dependent HCO3- secretion was apparently induced to compensate for the loss of Cl- secretion. The forskolin-induced Jv was significantly inhibited by the anion channel blockers 5-nitro-2-(3-phenylpropylamino)benzoic acid, diphenylamine-2-carboxylate, and glibenclamide. We conclude that the forskolin-induced Jv shares many characteristics of cholinergically induced secretion except for the presence of a DIDS-sensitive component. Although the identity of the DIDS-sensitive component is unclear, we speculate that it represents a basolateral membrane Na+ -HCO3- cotransporter or an Na+-dependent anion exchanger, which could account for transepithelial HCO3- secretion.[1]References
- Ionic mechanism of forskolin-induced liquid secretion by porcine bronchi. Ballard, S.T., Trout, L., Garrison, J., Inglis, S.K. Am. J. Physiol. Lung Cell Mol. Physiol. (2006) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg