The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Conservation of spermatogonial stem cell self-renewal signaling between mouse and rat.

Self-renewal of spermatogonial stem cells (SSCs) is the foundation for maintenance of spermatogenesis throughout life in males and for continuation of a species. The molecular mechanism underlying stem cell self-renewal is a fundamental question in stem cell biology. Recently, we identified growth factors necessary for self-renewal of mouse SSCs and established a serum-free culture system for their proliferation in vitro. To determine whether the stimulatory signals for SSC replication are conserved among different species, we extended the culture system to rat SSCs. Initially, a method to assess in vitro expansion of SSCs was developed by using flow cytometric analysis, and, subsequently, we found that a combination of glial cell line-derived neurotrophic factor, soluble glial cell line-derived neurotrophic factor-family receptor alpha-1 and basic fibroblast growth factor supports proliferation of rat SSCs. When cultured with the three factors, stem cells proliferated continuously for >7 months, and transplantation of the cultured SSCs to recipient rats generated donor stem cell-derived progeny, demonstrating that the cultured stem cells are normal. The growth factor requirement for replication of rat SSCs is identical to that of mouse; therefore, the signaling factors for SSC self-renewal are conserved in these two species. Because SSCs from many mammals, including human, can replicate in mouse seminiferous tubules after transplantation, the growth factors required for SSC self-renewal may be conserved among many different species. Furthermore, development of a long-term culture system for rat SSCs has established a foundation for germ-line modification of the rat by gene targeting technology.[1]


  1. Conservation of spermatogonial stem cell self-renewal signaling between mouse and rat. Ryu, B.Y., Kubota, H., Avarbock, M.R., Brinster, R.L. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
WikiGenes - Universities