The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Atg19p ubiquitination and the cytoplasm to vacuole trafficking pathway in yeast.

The cytoplasm to vacuole (Cvt) trafficking pathway in S. cerevisiae is a constitutive biosynthetic pathway required for the transport of two vacuolar enzymes, aminopeptidase I (Ape1p) and alpha-mannosidase (Ams1p), to the vacuole. Ape1p and Ams1p bind to their receptor, Atg19p, in the cytosol to form a Cvt complex, which then associates with a membrane structure that envelops the complex before fusing with the vacuolar membrane. Ubiquitin-like modifications are required for both Cvt and macroautophagy, but no role for ubiquitin itself has been described. Here, we show that the deubiquitinating enzyme Ubp3p interacts with Atg19p. Moreover, Atg19p is ubiquitinated in vivo, and Atg19p-ubiquitin conjugates accumulate in cells lacking either Ubp3p or its cofactor, Bre5p. Deletion of UBP3 also leads to decreased targeting of Ape1p to the vacuole. Atg19p is ubiquitinated on two lysine residues, Lys(213) and Lys(216), which, when mutated, reduce the interaction of Atg19p with Ape1p. These results suggest that both ubiquitination and deubiquitination of Atg19p are required for its full function.[1]

References

  1. Atg19p ubiquitination and the cytoplasm to vacuole trafficking pathway in yeast. Baxter, B.K., Abeliovich, H., Zhang, X., Stirling, A.G., Burlingame, A.L., Goldfarb, D.S. J. Biol. Chem. (2005) [Pubmed]
 
WikiGenes - Universities