The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

KLP10A and KLP59C: the dynamic duo of microtubule depolymerization.

Kinesin-13s are important effectors of microtubule depolymerization in cells. In a recent series of studies, we examined the roles played by kinesin-13s throughout the cell cycle in Drosophila. Our findings have revealed remarkable coordination between two family members, KLP10A and KLP59C, in which alterations in the relative targeting of these proteins allows them to participate in markedly different tasks at distinct points in the cell cycle. During mitosis, KLP10A and KLP59C function in parallel by targeting to and depolymerizing the opposite ends of kinetochore-associated microtubules, thereby driving poleward chromatid motility by a Pacman-Flux mechanism. Alternatively, during interphase, both proteins target to the same end of the microtubule but act in series to divide the labor of microtubule depolymerization. KLP10A initiates depolymerization while KLP59C perpetuates depolymerization after its initiation. Below, we detail these findings and examine some of their implications.[1]

References

  1. KLP10A and KLP59C: the dynamic duo of microtubule depolymerization. Sharp, D.J., Mennella, V., Buster, D.W. Cell Cycle (2005) [Pubmed]
 
WikiGenes - Universities