The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Influence of autoclaved fungal materials on spearmint (Mentha spicata L.) growth, morphogenesis, and secondary metabolism.

The influence of autoclaved fungal materials such as culture filtrate, freeze-dried mycelium (FDM), mycelium suspension, and spore suspension (SS) on the growth, morphogenesis, and carvone production of spearmint (Mentha spicata L.) plants was studied. Fungal materials were either applied as a drench or spray on the plants. Spearmint plants (cv. "294099") drenched with SS (1 x 10(8) spores/ml) of Trichoderma reesei showed no significant differences in leaf numbers, root numbers, or shoot numbers compared with nontreated controls. However, significantly higher fresh weights and carvone levels were observed in plants drenched with T. reesei SS compared with the untreated controls. Fungal materials derived from Aspergillus sp., Fusarium graminearum, F. sporotrichoides, Penicillium sp., P. acculeatum, Rhizopus oryzae, and T. reesei were sprayed on spearmint foliage. F. graminearum, F. sporotrichoides, or R. oryzae elicited no enhanced growth, morphogenesis, or secondary metabolism responses. The best growth and morphogenesis responses were obtained employing Aspergillus sp., Penicillium sp., or T. reesei foliar sprays. For example, spearmint cv. "557807" plants sprayed with 100 mg/l FDM T. reesei isolate NRRL 11460 C30 stimulated higher fresh weights (75%), shoot numbers (39%), leaf numbers (57%), and root numbers (108%) compared with untreated plants. This effect was not dose-dependent because similar growth and morphogenesis responses were obtained by testing 10, 100, or 1000 mg/l FDM concentrations. Carvone levels in fungal-treated foliar-sprayed plants were comparable to nontreated controls. However, total carvone levels per plant were higher in fungal-treated plants because of their increased fresh weight.[1]


WikiGenes - Universities