The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Identification of 9-hydroxyoctadecadienoic acid and other oxidized free fatty acids as ligands of the G protein-coupled receptor G2A.

G2A is a G protein-coupled receptor that is predominantly expressed in lymphoid tissues and macrophages. G2A can be induced by diverse stimuli to cause cell cycle arrest in the G(2)/M phase in pro-B and T cells. G2A is also expressed in macrophages within atherosclerotic lesions, suggesting G2A involvement in atherosclerosis. Recently, G2A was discovered to possess proton-sensing ability. In this paper, we report another function of G2A, that is, as a receptor for 9-hydroxyoctadecadienoic acid (9-HODE) and other oxidized free fatty acids. G2A, expressed in CHO-K1 or HEK293 cells, showed 9-HODE-induced intracellular calcium mobilization, inositol phosphate accumulation, inhibition of cAMP accumulation, [(35)S]guanosine 5'-3-O-(thio)triphosphate binding, and MAP kinase activation. Furthermore, G2A was activated by various oxidized derivatives of linoleic and arachidonic acids, but it was weakly activated by cholesteryl-9-HODE. Oxidized phosphatidylcholine (1-palmitoyl-2-linoleoyl) when hydrolyzed with phospholipase A(2) also evoked intracellular calcium mobilization in G2A-expressing cells. These results indicate that G2A is activated by oxidized free fatty acids produced by oxidation and subsequent hydrolysis of phosphatidylcholine or cholesteryl linoleate. Thus, G2A might have a biological role in diverse pathological conditions including atherosclerosis.[1]

References

 
WikiGenes - Universities