Identification of 9-hydroxyoctadecadienoic acid and other oxidized free fatty acids as ligands of the G protein-coupled receptor G2A.
G2A is a G protein-coupled receptor that is predominantly expressed in lymphoid tissues and macrophages. G2A can be induced by diverse stimuli to cause cell cycle arrest in the G(2)/M phase in pro-B and T cells. G2A is also expressed in macrophages within atherosclerotic lesions, suggesting G2A involvement in atherosclerosis. Recently, G2A was discovered to possess proton-sensing ability. In this paper, we report another function of G2A, that is, as a receptor for 9-hydroxyoctadecadienoic acid (9-HODE) and other oxidized free fatty acids. G2A, expressed in CHO-K1 or HEK293 cells, showed 9-HODE-induced intracellular calcium mobilization, inositol phosphate accumulation, inhibition of cAMP accumulation, [(35)S]guanosine 5'-3-O-(thio)triphosphate binding, and MAP kinase activation. Furthermore, G2A was activated by various oxidized derivatives of linoleic and arachidonic acids, but it was weakly activated by cholesteryl-9-HODE. Oxidized phosphatidylcholine (1-palmitoyl-2-linoleoyl) when hydrolyzed with phospholipase A(2) also evoked intracellular calcium mobilization in G2A-expressing cells. These results indicate that G2A is activated by oxidized free fatty acids produced by oxidation and subsequent hydrolysis of phosphatidylcholine or cholesteryl linoleate. Thus, G2A might have a biological role in diverse pathological conditions including atherosclerosis.[1]References
- Identification of 9-hydroxyoctadecadienoic acid and other oxidized free fatty acids as ligands of the G protein-coupled receptor G2A. Obinata, H., Hattori, T., Nakane, S., Tatei, K., Izumi, T. J. Biol. Chem. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg