The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

AGN-PC-00ARUZ     [10,13-dimethyl-17-(6- methylheptan-2-yl)-2...

Synonyms: AG-G-73988, ACMC-209mjv, AC1L5F7F, 604-33-1, Cholesterol Linoleate, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Cholesteryl linoleate

  • The only change in plasma lipids that appears to be relevant to the toxicity and its reversal by safflower oil is an increase in cholesteryl linoleate and a corresponding decrease in the cholesteryl ester of the dietary monoacylglycerol [1].
  • The reduction of cholesteryl linoleate in lipoproteins: an index of clinical severity in beta-thalassemia/Hb E [2].
  • An inverse relationship between the cholesteryl linoleate/cholesteryl oleate ratio (CL/CO) and the degree of clinical severity suggested that the CL/CO ratio is an index of damaged lipoproteins and could be used as a pathologic marker of underlying iron overload [2].
 

High impact information on Cholesteryl linoleate

 

Biological context of Cholesteryl linoleate

 

Anatomical context of Cholesteryl linoleate

 

Associations of Cholesteryl linoleate with other chemical compounds

 

Gene context of Cholesteryl linoleate

 

Analytical, diagnostic and therapeutic context of Cholesteryl linoleate

References

  1. Toxicity of rac-1(3)-myristoyl glycerol to mice. Tove, S.B., Sutherland-Smith, M. J. Nutr. (1988) [Pubmed]
  2. The reduction of cholesteryl linoleate in lipoproteins: an index of clinical severity in beta-thalassemia/Hb E. Luechapudiporn, R., Morales, N.P., Fucharoen, S., Chantharaksri, U. Clin. Chem. Lab. Med. (2006) [Pubmed]
  3. Identification of 9-hydroxyoctadecadienoic acid and other oxidized free fatty acids as ligands of the G protein-coupled receptor G2A. Obinata, H., Hattori, T., Nakane, S., Tatei, K., Izumi, T. J. Biol. Chem. (2005) [Pubmed]
  4. The rabbit 15-lipoxygenase preferentially oxygenates LDL cholesterol esters, and this reaction does not require vitamin E. Belkner, J., Stender, H., Kühn, H. J. Biol. Chem. (1998) [Pubmed]
  5. Effects of the neutral lipid content of high density lipoprotein on apolipoprotein A-I structure and particle stability. Sparks, D.L., Davidson, W.S., Lund-Katz, S., Phillips, M.C. J. Biol. Chem. (1995) [Pubmed]
  6. Lecithin-cholesterol acyltransferase (LCAT) catalyzes transacylation of intact cholesteryl esters. Evidence for the partial reversal of the forward LCAT reaction. Sorci-Thomas, M., Babiak, J., Rudel, L.L. J. Biol. Chem. (1990) [Pubmed]
  7. Influence of adrenocorticotropin on transport of a cholesteryl linoleate-low density lipoprotein complex into adrenal tumor cells. Hall, P.F., Nakamura, M. J. Biol. Chem. (1979) [Pubmed]
  8. Regioisomeric distribution of cholesteryl linoleate hydroperoxides and hydroxides in plasma from healthy humans provides evidence for free radical-mediated lipid peroxidation in vivo. Mashima, R., Onodera, K., Yamamoto, Y. J. Lipid Res. (2000) [Pubmed]
  9. Femtomole analysis of 9-oxononanoyl cholesterol by high performance liquid chromatography. Karten, B., Boechzelt, H., Abuja, P.M., Mittelbach, M., Oettl, K., Sattler, W. J. Lipid Res. (1998) [Pubmed]
  10. Free radical scavenging properties of apomorphine enantiomers and dopamine: possible implication in their mechanism of action in parkinsonism. Sam, E.E., Verbeke, N. Journal of neural transmission. Parkinson's disease and dementia section. (1995) [Pubmed]
  11. Oxidation products of cholesteryl linoleate are resistant to hydrolysis in macrophages, form complexes with proteins, and are present in human atherosclerotic lesions. Hoppe, G., Ravandi, A., Herrera, D., Kuksis, A., Hoff, H.F. J. Lipid Res. (1997) [Pubmed]
  12. Neutral lipid accumulation in macrophages during lipid-induced macrophage growth. Yui, S., Yamazaki, M. J. Leukoc. Biol. (1989) [Pubmed]
  13. Cholesteryl nitrolinoleate, a nitrated lipid present in human blood plasma and lipoproteins. Lima, E.S., Di Mascio, P., Abdalla, D.S. J. Lipid Res. (2003) [Pubmed]
  14. Oxidation of cholesteryl linoleate by human monocyte-macrophages in vitro. Carpenter, K.L., Ballantine, J.A., Fussell, B., Enright, J.H., Mitchinson, M.J. Atherosclerosis (1990) [Pubmed]
  15. Human serum paraoxonase (PON 1) is inactivated by oxidized low density lipoprotein and preserved by antioxidants. Aviram, M., Rosenblat, M., Billecke, S., Erogul, J., Sorenson, R., Bisgaier, C.L., Newton, R.S., La Du, B. Free Radic. Biol. Med. (1999) [Pubmed]
  16. Accumulation and metabolism of low density lipoprotein-derived cholesteryl linoleate hydroperoxide and hydroxide by macrophages. Kritharides, L., Upston, J., Jessup, W., Dean, R.T. J. Lipid Res. (1998) [Pubmed]
  17. Time-dependent changes to lipids and antioxidants in plasma and aortas of apolipoprotein E knockout mice. Letters, J.M., Witting, P.K., Christison, J.K., Eriksson, A.W., Pettersson, K., Stocker, R. J. Lipid Res. (1999) [Pubmed]
  18. Cellular damage in mouse peritoneal macrophages exposed to cholesteryl linoleate. Reid, V.C., Brabbs, C.E., Mitchinson, M.J. Atherosclerosis (1992) [Pubmed]
  19. Identification of cholesterol-bound aldehydes in copper-oxidized low density lipoprotein. Kamido, H., Kuksis, A., Marai, L., Myher, J.J. FEBS Lett. (1992) [Pubmed]
  20. Downregulation by tumor necrosis factor-alpha of monocyte CCR2 expression and monocyte chemotactic protein-1-induced transendothelial migration is antagonized by oxidized low-density lipoprotein: a potential mechanism of monocyte retention in atherosclerotic lesions. Weber, C., Draude, G., Weber, K.S., Wübert, J., Lorenz, R.L., Weber, P.C. Atherosclerosis (1999) [Pubmed]
  21. Concentration and composition of lipoproteins in blood plasma of the WHHL rabbit. An animal model of human familial hypercholesterolemia. Havel, R.J., Kita, T., Kotite, L., Kane, J.P., Hamilton, R.L., Goldstein, J.L., Brown, M.S. Arteriosclerosis (1982) [Pubmed]
  22. Copper can promote oxidation of LDL by markedly different mechanisms. Ziouzenkova, O., Sevanian, A., Abuja, P.M., Ramos, P., Esterbauer, H. Free Radic. Biol. Med. (1998) [Pubmed]
  23. Interactions between lifestyle-related factors and the ApoE polymorphism on plasma lipids and apolipoproteins. The EARS Study. European Atherosclerosis Research Study. Boer, J.M., Ehnholm, C., Menzel, H.J., Havekes, L.M., Rosseneu, M., O'Reilly, D.S., Tiret, L. Arterioscler. Thromb. Vasc. Biol. (1997) [Pubmed]
  24. Effects of oxidatively modified LDL on cholesterol esterification in cultured macrophages. Zhang, H.F., Basra, H.J., Steinbrecher, U.P. J. Lipid Res. (1990) [Pubmed]
  25. Cholesteryl hydroperoxyoctadecadienoate from oxidized low density lipoprotein inactivates platelet-derived growth factor. Van Heek, M., Schmitt, D., Toren, P., Cathcart, M.K., DiCorleto, P.E. J. Biol. Chem. (1998) [Pubmed]
  26. Rapid reduction and removal of HDL- but not LDL-associated cholesteryl ester hydroperoxides by rat liver perfused in situ. Christison, J., Karjalainen, A., Brauman, J., Bygrave, F., Stocker, R. Biochem. J. (1996) [Pubmed]
  27. Low density lipoprotein as a carrier of cytostatics in cancer chemotherapy: study of stability of drug-carrier complexes in blood. Masquelier, M., Vitols, S., Pålsson, M., Mårs, U., Larsson, B.S., Peterson, C.O. Journal of drug targeting. (2000) [Pubmed]
  28. Are plasma lipoprotein cholesteryl esters utilized for biliary cholesterol and bile acid production in man? Price, S.G., Cortese, C., Miller, N.E. Life Sci. (1985) [Pubmed]
  29. Human low density lipoproteins (LDL) in combination with cholesterol or cholesteryl linoleate as precursors for progesterone synthesis of human placenta in organ culture. Rabe, T., Kalbfleisch, H., Bierwirth, A.M., Runnebaum, B. Biological research in pregnancy and perinatology. (1984) [Pubmed]
 
WikiGenes - Universities