The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Altered plasticity of the human motor cortex in Parkinson's disease.

Interventional paired associative stimulation (IPAS) to the contralateral peripheral nerve and cerebral cortex can enhance the primary motor cortex (M1) excitability with two synchronously arriving inputs. This study investigated whether dopamine contributed to the associative long-term potentiation-like effect in the M1 in Parkinson's disease (PD) patients. Eighteen right-handed PD patients and 11 right-handed age-matched healthy volunteers were studied. All patients were studied after 12 hours off medication with levodopa replacement (PD-off). Ten patients were also evaluated after medication (PD-on). The IPAS comprised a single electric stimulus to the right median nerve at the wrist and subsequent transcranial magnetic stimulation of the left M1 with an interstimulus interval of 25 milliseconds (240 paired stimuli every 5 seconds for 20 minutes). The motor-evoked potential amplitude in the right abductor pollicis brevis muscle was increased by IPAS in healthy volunteers, but not in PD patients. IPAS did not affect the motor-evoked potential amplitude in the left abductor pollicis brevis. The ratio of the motor-evoked potential amplitude before and after IPAS in PD-off patients increased after dopamine replacement. Thus, dopamine might modulate cortical plasticity in the human M1, which could be related to higher order motor control, including motor learning.[1]

References

  1. Altered plasticity of the human motor cortex in Parkinson's disease. Ueki, Y., Mima, T., Kotb, M.A., Sawada, H., Saiki, H., Ikeda, A., Begum, T., Reza, F., Nagamine, T., Fukuyama, H. Ann. Neurol. (2006) [Pubmed]
 
WikiGenes - Universities