Evaluation of OX40 ligand as a costimulator of human antiviral memory CD8 T cell responses: comparison with B7.1 and 4-1BBL.
CTL are important effectors of antiviral immunity. Designing adjuvants that can induce strong cytotoxic T cell responses in humans would greatly improve the effectiveness of an antiviral vaccination or therapeutic strategy. Recent evidence suggests that, in addition to its well-established role in costimulation of CD4 T cell responses, OX40L ( CD134) can directly costimulate mouse CD8 T cells. In this study, we evaluated the role of OX40L in costimulation of human antiviral CD8 T cell responses and compared it with two other important costimulators, B7.1 (CD80) and 4-1BBL (CD137L). Delivery of OX40L to human monocytes using a recombinant replication-defective adenovirus led to greater expansion, up-regulation of perforin, enhanced cytolytic activity, and increased numbers of IFN-gamma- and TNF-alpha-producing antiviral memory CD8 T cells in cultures of total T cells. Synergistic or additive effects were observed when OX40L costimulation was combined with 4-1BBL (CD137L) or B7.1 (CD80) costimulation. In total T cell cultures, at low Ag dose, 4-1BBL provided the most potent costimulus for influenza-specific CD8 T cell expansion, followed by B7.1 (CD80) and then OX40L. For isolated CD8 T cells, 4-1BBL was also the most consistent costimulator, followed by B7. 1. In contrast, OX40L showed efficacy in direct activation of memory CD8 T cells in only one of seven donors. Thus, OX40L costimulates human antiviral memory CD8 T cell responses largely through indirect effects and can enhance anti-influenza, anti-EBV, and anti-HIV responses, particularly in combination with 4-1BBL or B7.[1]References
- Evaluation of OX40 ligand as a costimulator of human antiviral memory CD8 T cell responses: comparison with B7.1 and 4-1BBL. Serghides, L., Bukczynski, J., Wen, T., Wang, C., Routy, J.P., Boulassel, M.R., Sekaly, R.P., Ostrowski, M., Bernard, N.F., Watts, T.H. J. Immunol. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg