The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Tnfsf9  -  tumor necrosis factor (ligand) superfamily...

Mus musculus

Synonyms: 4-1BB ligand, 4-1BB-L, 4-1BBL, AI848817, Cd137l, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Tnfsf9

 

High impact information on Tnfsf9

 

Chemical compound and disease context of Tnfsf9

  • TCR-transgenic CD28-/- LCMV glycoprotein-specific T cells are insensitive to the presence of 4-1BBL when a wild-type peptide is used, but the response to a weak agonist peptide is greatly augmented by the presence of 4-1BBL [4].
 

Biological context of Tnfsf9

 

Anatomical context of Tnfsf9

 

Associations of Tnfsf9 with chemical compounds

  • These data are the first to suggest a stimulatory role for endogenous 4-1BB-4-1BBL interactions during a humoral immune response to a pathogen and further underscore significant differences in costimulation requirements for an in vivo protein- versus polysaccharide-specific Ig isotype response to an extracellular bacterium [16].
 

Physical interactions of Tnfsf9

 

Regulatory relationships of Tnfsf9

  • However, OX40L can also stimulate CD8 T cells and 4-1BBL can influence CD4 T cells, raising the possibility of redundancy between the two TNFR family costimulators [17].
  • The optimal effect of 4-1BBL in CTL stimulation required B7-CD28 interaction since blockade of this interaction by antibodies down-regulated the expression of 4-1BB on T cells and decreased CTL activity [14].
 

Other interactions of Tnfsf9

 

Analytical, diagnostic and therapeutic context of Tnfsf9

  • Two months after immunization, 4-1BBL+/+ mice still had epitope-specific cells and were protected against viral challenge, demonstrating that peptide vaccination can induce long-term protection [3].
  • These findings suggest that TNF ligand superfamily co-stimulatory molecules, especially 4-1BBL, play an important role in the development of acute viral myocarditis and raise the possibility that immunotherapy with anti-4-1BBL MAb may be of benefit in acute viral myocarditis [13].
  • Co-culture of splenic DC with 4-1BBL-transfected cells or 4-1BBL-expressing tumor cell lines led to cytokine (IL-6 and IL-12) production and co-stimulatory molecule up-regulation by splenic DC, indicating that 4-1BBL can directly activate DC [15].
  • In this study a functional anti-human 4-1BBL MAb 1F1 was obtained and the specificity of this MAb was verified by flow cytometry and Western blotting [12].
  • RESULTS: The long-term survival rate of mice treated with the combination of IL-12 and 4-1BBL was significantly improved over that of animals in the control group (P =.0001) [7].

References

  1. Role of 4-1BB ligand in costimulation of T lymphocyte growth and its upregulation on M12 B lymphomas by cAMP. DeBenedette, M.A., Chu, N.R., Pollok, K.E., Hurtado, J., Wade, W.F., Kwon, B.S., Watts, T.H. J. Exp. Med. (1995) [Pubmed]
  2. Temporal segregation of 4-1BB versus CD28-mediated costimulation: 4-1BB ligand influences T cell numbers late in the primary response and regulates the size of the T cell memory response following influenza infection. Bertram, E.M., Lau, P., Watts, T.H. J. Immunol. (2002) [Pubmed]
  3. 4-1BB costimulation is required for protective anti-viral immunity after peptide vaccination. Tan, J.T., Whitmire, J.K., Murali-Krishna, K., Ahmed, R., Altman, J.D., Mittler, R.S., Sette, A., Pearson, T.C., Larsen, C.P. J. Immunol. (2000) [Pubmed]
  4. Analysis of 4-1BB ligand (4-1BBL)-deficient mice and of mice lacking both 4-1BBL and CD28 reveals a role for 4-1BBL in skin allograft rejection and in the cytotoxic T cell response to influenza virus. DeBenedette, M.A., Wen, T., Bachmann, M.F., Ohashi, P.S., Barber, B.H., Stocking, K.L., Peschon, J.J., Watts, T.H. J. Immunol. (1999) [Pubmed]
  5. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Melero, I., Shuford, W.W., Newby, S.A., Aruffo, A., Ledbetter, J.A., Hellström, K.E., Mittler, R.S., Chen, L. Nat. Med. (1997) [Pubmed]
  6. CD28-independent, TRAF2-dependent costimulation of resting T cells by 4-1BB ligand. Saoulli, K., Lee, S.Y., Cannons, J.L., Yeh, W.C., Santana, A., Goldstein, M.D., Bangia, N., DeBenedette, M.A., Mak, T.W., Choi, Y., Watts, T.H. J. Exp. Med. (1998) [Pubmed]
  7. Immunomodulatory gene therapy with interleukin 12 and 4-1BB ligand: long- term remission of liver metastases in a mouse model. Martinet, O., Ermekova, V., Qiao, J.Q., Sauter, B., Mandeli, J., Chen, L., Chen, S.H. J. Natl. Cancer Inst. (2000) [Pubmed]
  8. 4-1BB ligand induces cell division, sustains survival, and enhances effector function of CD4 and CD8 T cells with similar efficacy. Cannons, J.L., Lau, P., Ghumman, B., DeBenedette, M.A., Yagita, H., Okumura, K., Watts, T.H. J. Immunol. (2001) [Pubmed]
  9. Enhanced Osteoclastogenesis in 4-1BB-Deficient Mice Caused by Reduced Interleukin-10. Shin, H.H., Lee, J.E., Lee, E.A., Kwon, B.S., Choi, H.S. J. Bone Miner. Res. (2006) [Pubmed]
  10. Molecular and biological characterization of human 4-1BB and its ligand. Alderson, M.R., Smith, C.A., Tough, T.W., Davis-Smith, T., Armitage, R.J., Falk, B., Roux, E., Baker, E., Sutherland, G.R., Din, W.S. Eur. J. Immunol. (1994) [Pubmed]
  11. LIGHT is dispensable for CD4+ and CD8+ T cell and antibody responses to influenza A virus in mice. Sedgmen, B.J., Dawicki, W., Gommerman, J.L., Pfeffer, K., Watts, T.H. Int. Immunol. (2006) [Pubmed]
  12. A functional anti-human 4-1BB ligand monoclonal antibody that enhances proliferation of monocytes by reverse signaling of 4-1BBL. Ju, S.W., Ju, S.G., Wang, F.M., Gu, Z.J., Qiu, Y.H., Yu, G.H., Ma, H.B., Zhang, X.G. Hybrid. Hybridomics (2003) [Pubmed]
  13. Expression of tumour necrosis factor (TNF) ligand superfamily co-stimulatory molecules CD30L, CD27L, OX40L, and 4-1BBL in murine hearts with acute myocarditis caused by Coxsackievirus B3. Seko, Y., Takahashi, N., Oshima, H., Shimozato, O., Akiba, H., Takeda, K., Kobata, T., Yagita, H., Okumura, K., Azuma, M., Nagai, R. J. Pathol. (2001) [Pubmed]
  14. Amplification of tumor immunity by gene transfer of the co-stimulatory 4-1BB ligand: synergy with the CD28 co-stimulatory pathway. Melero, I., Bach, N., Hellström, K.E., Aruffo, A., Mittler, R.S., Chen, L. Eur. J. Immunol. (1998) [Pubmed]
  15. Expression and function of 4-1BB and 4-1BB ligand on murine dendritic cells. Futagawa, T., Akiba, H., Kodama, T., Takeda, K., Hosoda, Y., Yagita, H., Okumura, K. Int. Immunol. (2002) [Pubmed]
  16. 4-1BB (CD137) differentially regulates murine in vivo protein- and polysaccharide-specific immunoglobulin isotype responses to Streptococcus pneumoniae. Wu, Z.Q., Khan, A.Q., Shen, Y., Wolcott, K.M., Dawicki, W., Watts, T.H., Mittler, R.S., Snapper, C.M. Infect. Immun. (2003) [Pubmed]
  17. 4-1BB and OX40 act independently to facilitate robust CD8 and CD4 recall responses. Dawicki, W., Bertram, E.M., Sharpe, A.H., Watts, T.H. J. Immunol. (2004) [Pubmed]
  18. During viral infection of the respiratory tract, CD27, 4-1BB, and OX40 collectively determine formation of CD8+ memory T cells and their capacity for secondary expansion. Hendriks, J., Xiao, Y., Rossen, J.W., van der Sluijs, K.F., Sugamura, K., Ishii, N., Borst, J. J. Immunol. (2005) [Pubmed]
  19. Evaluation of OX40 ligand as a costimulator of human antiviral memory CD8 T cell responses: comparison with B7.1 and 4-1BBL. Serghides, L., Bukczynski, J., Wen, T., Wang, C., Routy, J.P., Boulassel, M.R., Sekaly, R.P., Ostrowski, M., Bernard, N.F., Watts, T.H. J. Immunol. (2005) [Pubmed]
 
WikiGenes - Universities