The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Iodophenylarsine oxide and arsenical affinity chromatography: new probes for dithiol proteins. Application to tubulins and to components of the insulin receptor-glucose transporter signal transduction pathway.

In our studies of the effects of the trivalent arsenical phenylarsine oxide on insulin-dependent hexose uptake in 3T3-L1 adipocytes, we needed direct methods to study arsenical-protein interactions. In this report, we describe two such new tools. The first is the radiolabeled covalent affinity reagent 4-[125I]iodophenylarsine oxide. This compound has effects on 3T3-L1 adipocytes similar to those of phenylarsine oxide both with respect to effects of hexose uptake and the accumulation of pp15, a phosphotyrosine-containing putative mediator of insulin action. Iodophenylarsine oxide labels numerous proteins in intact cells in a concentration-dependent, but apparently insulin-independent fashion. The second tool is trivalent arsenical affinity chromatography, which we use to show novel direct interactions between trivalent arsenicals and several proteins from 3T3-L1 adipocytes including the insulin-responsive glucose transporter GLUT4, the insulin proreceptor, and both the alpha and beta subunits of tubulin. The non-insulin-dependent glucose transporter GLUT1, the mature insulin receptor, and the fatty acid-binding protein 422(aP2) do not show strong interactions with arsenical resin. These results provide a new chemical approach to the study of both insulin-dependent hexose transport and tubulin function.[1]

References

 
WikiGenes - Universities