The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Beta-catenin regulates myogenesis by relieving I-mfa- mediated suppression of myogenic regulatory factors in P19 cells.

Wnt/beta-catenin signaling plays a critical role in embryonic myogenesis. Here we show that, in P19 embryonic carcinoma stem cells, Wnt/beta-catenin signaling initiates the myogenic process depends on beta-catenin- mediated relief of I-mfa (inhibitor of MyoD Family a) suppression of myogenic regulatory factors (MRFs). We found that beta-catenin interacted with I-mfa and that the interaction was enhanced by Wnt3a. In addition, we found that the interaction between beta-catenin and I-mfa was able to attenuate the interaction of I-mfa with MRFs, relieve I-mfa-mediated suppression of the transcriptional activity and cytosolic sequestration of MRFs, and initiate myogenesis in a P19 myogenic model system that expresses exogenous myogenin. This work reveals a mechanism for the regulation of MRFs during myogenesis by elucidating a beta-catenin-mediated, but lymphoid enhancing factor-1/T cell factor independent, mechanism in regulation of myogenic fate specification and differentiation of P19 mouse stem cells.[1]


  1. Beta-catenin regulates myogenesis by relieving I-mfa-mediated suppression of myogenic regulatory factors in P19 cells. Pan, W., Jia, Y., Wang, J., Tao, D., Gan, X., Tsiokas, L., Jing, N., Wu, D., Li, L. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
WikiGenes - Universities