The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Myog  -  myogenin

Mus musculus

Synonyms: MYF4, MYOD1-related protein, Myogenin, bHLHc3, myo
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Myog

 

Psychiatry related information on Myog

 

High impact information on Myog

  • In the absence of MLP, induced C2 cells express myogenin but fail to exit from the cell cycle and to differentiate [7].
  • Although NFB cells express myogenin and Myf-5 transcripts, the activity of these regulators is also repressed:myogenesis is not induced in 10T1/2 fibroblasts and is repressed in L6 muscle cells upon fusion with NFB cells [8].
  • Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD [9].
  • Myogenin is absent in undifferentiated cells, peaks, and then declines following a stimulus to differentiate, and is overexpressed in myoblasts selected with 5-bromodeoxyuridine for the overproduction of factors that regulate the decision to differentiate [9].
  • Transfection of myogenin into the mesenchymal cell line C3H10T1/2 produces cells expressing muscle-specific markers [9].
 

Biological context of Myog

 

Anatomical context of Myog

  • The pattern of expression of MyoD1 and myogenin during the early stages of muscle formation in the mouse embryo in vivo and in limb-bud explants cultured in vitro, indicates that they may have different functions in different types of muscle during development [12].
  • In contrast, JunD, which shares DNA-binding specificity with JunB and c-Jun but is expressed constitutively in muscle cells, is an inefficient inhibitor of the trans-activating capacity of myogenin and MyoD [15].
  • Myogenin, one of the MyoD family of proteins, is expressed early during somitogenesis and is required for myoblast fusion in vivo [16].
  • In mice lacking myogenin, there is a severe deficiency of skeletal muscle, but some residual muscle fibers are present in mutant mice at birth [17].
  • Their irregularly shaped somites expressed a somite marker gene Mox 1 but failed to express myogenin [18].
 

Associations of Myog with chemical compounds

 

Physical interactions of Myog

 

Enzymatic interactions of Myog

  • These disorders are correlated with low levels of expression of transcription factor myogenin and with the persistence of a large pool of hyperphosphorylated retinoblastoma protein [29].
 

Regulatory relationships of Myog

 

Co-localisations of Myog

 

Other interactions of Myog

  • Functional redundancy of the muscle-specific transcription factors Myf5 and myogenin [35].
  • The number of MyoD- and Myogenin-expressing activated satellite cells after injury were significantly reduced in mutants [36].
  • Antibodies directed specifically against Six1 or Six4 proteins reveal that each of these proteins is present in the embryo when myogenin is activated and constitutes a muscle-specific MEF3-binding activity in adult muscle nuclear extracts [16].
  • Myogenin and MEF2 function synergistically to activate the MRF4 promoter during myogenesis [37].
  • In the mouse, myogenin, first detected at 8.5 days p.c., is expressed at the same time as BCK in myotomes [14].
 

Analytical, diagnostic and therapeutic context of Myog

References

  1. Hypoxia inhibits myogenic differentiation through accelerated MyoD degradation. Di Carlo, A., De Mori, R., Martelli, F., Pompilio, G., Capogrossi, M.C., Germani, A. J. Biol. Chem. (2004) [Pubmed]
  2. Expression of MyoD and myogenin in dystrophic mice, mdx and dy, during regeneration. Jin, Y., Murakami, N., Saito, Y., Goto, Y., Koishi, K., Nonaka, I. Acta Neuropathol. (2000) [Pubmed]
  3. Immunohistochemical detection of myogenin and p21 in methylcholanthrene-induced mouse rhabdomyosarcomas. Inoue, M., Wu, H. International journal of experimental pathology (2006) [Pubmed]
  4. Subcutaneous microchip-associated tumours in B6C3F1 mice: a retrospective study to attempt to determine their histogenesis. Le Calvez, S., Perron-Lepage, M.F., Burnett, R. Experimental and toxicologic pathology : official journal of the Gesellschaft für Toxikologische Pathologie. (2006) [Pubmed]
  5. Structure and promoter analysis of the human unc-33-like phosphoprotein gene. E-box required for maximal expression in neuroblastoma and myoblasts. Matsuo, T., Stauffer, J.K., Walker, R.L., Meltzer, P., Thiele, C.J. J. Biol. Chem. (2000) [Pubmed]
  6. Expression of the Gs protein alpha-subunit disrupts the normal program of differentiation in cultured murine myogenic cells. Tsai, C.C., Saffitz, J.E., Billadello, J.J. J. Clin. Invest. (1997) [Pubmed]
  7. Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation. Arber, S., Halder, G., Caroni, P. Cell (1994) [Pubmed]
  8. Negative control of the helix-loop-helix family of myogenic regulators in the NFB mutant. Peterson, C.A., Gordon, H., Hall, Z.W., Paterson, B.M., Blau, H.M. Cell (1990) [Pubmed]
  9. Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Wright, W.E., Sassoon, D.A., Lin, V.K. Cell (1989) [Pubmed]
  10. Global and gene-specific analyses show distinct roles for Myod and Myog at a common set of promoters. Cao, Y., Kumar, R.M., Penn, B.H., Berkes, C.A., Kooperberg, C., Boyer, L.A., Young, R.A., Tapscott, S.J. EMBO J. (2006) [Pubmed]
  11. Loss of myogenin in postnatal life leads to normal skeletal muscle but reduced body size. Knapp, J.R., Davie, J.K., Myer, A., Meadows, E., Olson, E.N., Klein, W.H. Development (2006) [Pubmed]
  12. Expression of two myogenic regulatory factors myogenin and MyoD1 during mouse embryogenesis. Sassoon, D., Lyons, G., Wright, W.E., Lin, V., Lassar, A., Weintraub, H., Buckingham, M. Nature (1989) [Pubmed]
  13. Cooperation of six and eya in activation of their target genes through nuclear translocation of Eya. Ohto, H., Kamada, S., Tago, K., Tominaga, S.I., Ozaki, H., Sato, S., Kawakami, K. Mol. Cell. Biol. (1999) [Pubmed]
  14. Developmental regulation of creatine kinase gene expression by myogenic factors in embryonic mouse and chick skeletal muscle. Lyons, G.E., Mühlebach, S., Moser, A., Masood, R., Paterson, B.M., Buckingham, M.E., Perriard, J.C. Development (1991) [Pubmed]
  15. Fos and Jun repress transcriptional activation by myogenin and MyoD: the amino terminus of Jun can mediate repression. Li, L., Chambard, J.C., Karin, M., Olson, E.N. Genes Dev. (1992) [Pubmed]
  16. Expression of myogenin during embryogenesis is controlled by Six/sine oculis homeoproteins through a conserved MEF3 binding site. Spitz, F., Demignon, J., Porteu, A., Kahn, A., Concordet, J.P., Daegelen, D., Maire, P. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  17. Overlapping functions of the myogenic bHLH genes MRF4 and MyoD revealed in double mutant mice. Rawls, A., Valdez, M.R., Zhang, W., Richardson, J., Klein, W.H., Olson, E.N. Development (1998) [Pubmed]
  18. Disruption of the mouse RBP-J kappa gene results in early embryonic death. Oka, C., Nakano, T., Wakeham, A., de la Pompa, J.L., Mori, C., Sakai, T., Okazaki, S., Kawaichi, M., Shiota, K., Mak, T.W., Honjo, T. Development (1995) [Pubmed]
  19. A natural hepatocyte growth factor/scatter factor autocrine loop in myoblast cells and the effect of the constitutive Met kinase activation on myogenic differentiation. Anastasi, S., Giordano, S., Sthandier, O., Gambarotta, G., Maione, R., Comoglio, P., Amati, P. J. Cell Biol. (1997) [Pubmed]
  20. Myogenic programs of mouse muscle cell lines: expression of myosin heavy chain isoforms, MyoD1, and myogenin. Miller, J.B. J. Cell Biol. (1990) [Pubmed]
  21. Transgenic overexpression of caveolin-3 in skeletal muscle fibers induces a Duchenne-like muscular dystrophy phenotype. Galbiati, F., Volonte, D., Chu, J.B., Li, M., Fine, S.W., Fu, M., Bermudez, J., Pedemonte, M., Weidenheim, K.M., Pestell, R.G., Minetti, C., Lisanti, M.P. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  22. Herculin, a fourth member of the MyoD family of myogenic regulatory genes. Miner, J.H., Wold, B. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  23. Accelerated response of the myogenin gene to denervation in mutant mice lacking phosphorylation of myogenin at threonine 87. Blagden, C.S., Fromm, L., Burden, S.J. Mol. Cell. Biol. (2004) [Pubmed]
  24. MyoD targets chromatin remodeling complexes to the myogenin locus prior to forming a stable DNA-bound complex. de la Serna, I.L., Ohkawa, Y., Berkes, C.A., Bergstrom, D.A., Dacwag, C.S., Tapscott, S.J., Imbalzano, A.N. Mol. Cell. Biol. (2005) [Pubmed]
  25. Role of innervation, excitability, and myogenic factors in the expression of the muscular chloride channel ClC-1. A study on normal and myotonic muscle. Klocke, R., Steinmeyer, K., Jentsch, T.J., Jockusch, H. J. Biol. Chem. (1994) [Pubmed]
  26. Myogenin binds to and represses c-fos promoter. Trouche, D., Masutani, H., Groisman, R., Robin, P., Lenormand, J.L., Harel-Bellan, A. FEBS Lett. (1995) [Pubmed]
  27. Retinoblastoma antioncogene is involved in the inhibition of myogenesis by polyomavirus large T antigen. Maione, R., Fimia, G.M., Holman, P., Schaffhausen, B., Amati, P. Cell Growth Differ. (1994) [Pubmed]
  28. Transcriptional activation of the myogenin gene by MEF2-mediated recruitment of myf5 is inhibited by adenovirus E1A protein. Johanson, M., Meents, H., Ragge, K., Buchberger, A., Arnold, H.H., Sandmöller, A. Biochem. Biophys. Res. Commun. (1999) [Pubmed]
  29. Expression of a mutant lamin A that causes Emery-Dreifuss muscular dystrophy inhibits in vitro differentiation of C2C12 myoblasts. Favreau, C., Higuet, D., Courvalin, J.C., Buendia, B. Mol. Cell. Biol. (2004) [Pubmed]
  30. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. Katagiri, T., Yamaguchi, A., Komaki, M., Abe, E., Takahashi, N., Ikeda, T., Rosen, V., Wozney, J.M., Fujisawa-Sehara, A., Suda, T. J. Cell Biol. (1994) [Pubmed]
  31. MRF4 can substitute for myogenin during early stages of myogenesis. Zhu, Z., Miller, J.B. Dev. Dyn. (1997) [Pubmed]
  32. Muscle cell differentiation is inhibited by the helix-loop-helix protein Id3. Melnikova, I.N., Christy, B.A. Cell Growth Differ. (1996) [Pubmed]
  33. N-cadherin activation substitutes for the cell contact control in cell cycle arrest and myogenic differentiation: involvement of p120 and beta-catenin. Gavard, J., Marthiens, V., Monnet, C., Lambert, M., Mège, R.M. J. Biol. Chem. (2004) [Pubmed]
  34. Myogenin and the SWI/SNF ATPase Brg1 maintain myogenic gene expression at different stages of skeletal myogenesis. Ohkawa, Y., Yoshimura, S., Higashi, C., Marfella, C.G., Dacwag, C.S., Tachibana, T., Imbalzano, A.N. J. Biol. Chem. (2007) [Pubmed]
  35. Functional redundancy of the muscle-specific transcription factors Myf5 and myogenin. Wang, Y., Schnegelsberg, P.N., Dausman, J., Jaenisch, R. Nature (1996) [Pubmed]
  36. A role for FGF-6 in skeletal muscle regeneration. Floss, T., Arnold, H.H., Braun, T. Genes Dev. (1997) [Pubmed]
  37. Myogenin and MEF2 function synergistically to activate the MRF4 promoter during myogenesis. Naidu, P.S., Ludolph, D.C., To, R.Q., Hinterberger, T.J., Konieczny, S.F. Mol. Cell. Biol. (1995) [Pubmed]
  38. Upstream sequences of the myogenin gene convey responsiveness to skeletal muscle denervation in transgenic mice. Buonanno, A., Edmondson, D.G., Hayes, W.P. Nucleic Acids Res. (1993) [Pubmed]
  39. Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice. Kassar-Duchossoy, L., Gayraud-Morel, B., Gomès, D., Rocancourt, D., Buckingham, M., Shinin, V., Tajbakhsh, S. Nature (2004) [Pubmed]
 
WikiGenes - Universities