Inflammation in periodontal tissues in response to mechanical forces.
Orthodontic forces are known to produce mechanical damage and inflammatory reactions in the periodontium and dental pulp, as well as inflammatory mediators, e.g. prostaglandins, interleukin (IL)-1, IL-6, tumor necrosis factor alpha, and receptor activator of nuclear factor kappaB ligand, in the periodontal ligament (PDL) and dental pulp. We have studied the effects of aging on the production of inflammatory mediators in the PDL using in vitro and in vitro methods and found that aging of PDL tissues may be an important factor in the severity of periodontal disease through a higher production of inflammatory mediators in response to mechanical forces. Further, the levels of inflammatory mediators in gingival crevicular fluid, an osmotically mediated inflammatory exudates found in the gingival sulcus, have been shown to be significantly elevated during orthodontic treatment. In order to reduce inflammation, low-level laser therapy has been recently studied in vitro and in vitro by many investigators as a substitute for anti-inflammatory drugs. Clinical and experimental studies have shown that low-level laser irradiation reduces orthodontic post-adjustment inflammation. We believe that orthodontic forces (mechanical forces) may play an important role in periodontal inflammation and that low-level laser therapy may be useful for its inhibition.[1]References
- Inflammation in periodontal tissues in response to mechanical forces. Yamaguchi, M., Kasai, K. Arch. Immunol. Ther. Exp. (Warsz.) (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg