The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Periodontal Diseases

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Periodontal Diseases


Psychiatry related information on Periodontal Diseases


High impact information on Periodontal Diseases


Chemical compound and disease context of Periodontal Diseases

  • The arginine-specific protease activity of Porphyromonas gingivalis is considered to be an important factor in the pathogenic potential of this organism in destructive periodontal disease [15].
  • METHODS: A total of 135 postmenopausal women (aged 41-70 years) with no evidence of moderate or severe periodontal disease were randomized to receive daily oral conjugated estrogen (Premarin; 0.625 mg) alone or in combination with medroxyprogesterone acetate (Prempro; 0.625 and 2.5 mg, respectively) or placebo [16].
  • The most important of the other factors is regular tooth brushing, which results in the removal of the bacterial plaque that causes caries and periodontal diseases and makes fluoride (which is contained in every advanced toothpaste) available for maintenance of the hard dental tissues and for remineralization wherever demineralization has occurred [17].
  • Arg-gingipain (Rgp) and Lys-gingipain (Kgp) are cysteine proteinases produced by Porphyromonas gingivalis, a major etiological bacterium of periodontal diseases [18].
  • Although periodontal disease was common in nondiabetic Pima Indians, in whom most of the incident cases occurred, diabetes clearly conferred a substantially increased risk [4].

Biological context of Periodontal Diseases


Anatomical context of Periodontal Diseases


Gene context of Periodontal Diseases

  • The potential involvement of the inducible cyclooxygenase isoform (COX-2) and the role of novel lipid mediators were investigated in the pathogenesis of periodontal disease [29].
  • These results indicate that LTAs act as antagonists or agonists via a CD14-dependent mechanism, probably due to the heterogeneous structure of LTAs, and that an antagonistic LTA might be a useful agent for suppressing the periodontal disease caused by gram-negative bacteria [30].
  • In addition, IL-17 cooperates with bacterial components involved in periodontal disease to up-regulate LIX expression [31].
  • This novel function of TLR2 as a signaling receptor for pathogen-induced activation of CD11b-CD18 may play a significant role in infection-driven chronic inflammatory conditions, such as periodontal disease or atherosclerosis, where P. gingivalis has been implicated [32].
  • The two polypeptides, MRP8 and MRP14, identified in GCF represent the major difference between the 2-D PAGE patterns of serum and GCF, and we hypothesize that they may play an important role in the gingival sulcus and could represent possible markers for periodontal diseases [33].

Analytical, diagnostic and therapeutic context of Periodontal Diseases


  1. Purification and characterization of a novel arginine-specific cysteine proteinase (argingipain) involved in the pathogenesis of periodontal disease from the culture supernatant of Porphyromonas gingivalis. Kadowaki, T., Yoneda, M., Okamoto, K., Maeda, K., Yamamoto, K. J. Biol. Chem. (1994) [Pubmed]
  2. Design and characterization of a fluorogenic substrate selectively hydrolyzed by stromelysin 1 (matrix metalloproteinase-3). Nagase, H., Fields, C.G., Fields, G.B. J. Biol. Chem. (1994) [Pubmed]
  3. Analysis of human IgG and IgA subclass antibody-secreting cells from localized chronic inflammatory tissue. Ogawa, T., Tarkowski, A., McGhee, M.L., Moldoveanu, Z., Mestecky, J., Hirsch, H.Z., Koopman, W.J., Hamada, S., McGhee, J.R., Kiyono, H. J. Immunol. (1989) [Pubmed]
  4. Periodontal disease and NIDDM in Pima Indians. Nelson, R.G., Shlossman, M., Budding, L.M., Pettitt, D.J., Saad, M.F., Genco, R.J., Knowler, W.C. Diabetes Care (1990) [Pubmed]
  5. Butyrate and propionate: important components of toxic dental plaque extracts. Singer, R.E., Buckner, B.A. Infect. Immun. (1981) [Pubmed]
  6. Gender and smoking-related risk reduction of periodontal disease with variant myeloperoxidase alleles. Meisel, P., Krause, T., Cascorbi, I., Schroeder, W., Herrmann, F., John, U., Kocher, T. Genes Immun. (2002) [Pubmed]
  7. Dental health behaviors and periodontal disease indicators in Danish youths. A 10-year epidemiological follow-up. Lissau, I., Holst, D., Friis-Hasché, E. Journal of clinical periodontology. (1990) [Pubmed]
  8. Diagnosis of periodontal diseases. Ranney, R.R. Adv. Dent. Res. (1991) [Pubmed]
  9. Oral conditions in Sjögren-Larsson syndrome. Forsberg, H., Jagell, S., Reuterving, C.O. Swedish dental journal. (1983) [Pubmed]
  10. An interleukin 1 like factor stimulates bone resorption in vitro. Gowen, M., Wood, D.D., Ihrie, E.J., McGuire, M.K., Russell, R.G. Nature (1983) [Pubmed]
  11. Flurbiprofen: a potent inhibitor of alveolar bone resorption in beagles. Williams, R.C., Jeffcoat, M.K., Kaplan, M.L., Goldhaber, P., Johnson, H.G., Wechter, W.J. Science (1985) [Pubmed]
  12. Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. Pütsep, K., Carlsson, G., Boman, H.G., Andersson, M. Lancet (2002) [Pubmed]
  13. Chronic stress and age-related increases in the proinflammatory cytokine IL-6. Kiecolt-Glaser, J.K., Preacher, K.J., MacCallum, R.C., Atkinson, C., Malarkey, W.B., Glaser, R. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  14. Requirement of B7 costimulation for Th1-mediated inflammatory bone resorption in experimental periodontal disease. Kawai, T., Eisen-Lev, R., Seki, M., Eastcott, J.W., Wilson, M.E., Taubman, M.A. J. Immunol. (2000) [Pubmed]
  15. The prpR1 and prR2 arginine-specific protease genes of Porphyromonas gingivalis W50 produce five biochemically distinct enzymes. Rangarajan, M., Aduse-Opoku, J., Slaney, J.M., Young, K.A., Curtis, M.A. Mol. Microbiol. (1997) [Pubmed]
  16. Alveolar and postcranial bone density in postmenopausal women receiving hormone/estrogen replacement therapy: a randomized, double-blind, placebo-controlled trial. Civitelli, R., Pilgram, T.K., Dotson, M., Muckerman, J., Lewandowski, N., Armamento-Villareal, R., Yokoyama-Crothers, N., Kardaris, E.E., Hauser, J., Cohen, S., Hildebolt, C.F. Arch. Intern. Med. (2002) [Pubmed]
  17. Nutritional role of sugars in oral health. König, K.G., Navia, J.M. Am. J. Clin. Nutr. (1995) [Pubmed]
  18. Suppression of pathogenicity of Porphyromonas gingivalis by newly developed gingipain inhibitors. Kadowaki, T., Baba, A., Abe, N., Takii, R., Hashimoto, M., Tsukuba, T., Okazaki, S., Suda, Y., Asao, T., Yamamoto, K. Mol. Pharmacol. (2004) [Pubmed]
  19. Absence of exogenous interleukin-4-induced apoptosis of gingival macrophages may contribute to chronic inflammation in periodontal diseases. Yamamoto, M., Kawabata, K., Fujihashi, K., McGhee, J.R., Van Dyke, T.E., Bamberg, T.V., Hiroi, T., Kiyono, H. Am. J. Pathol. (1996) [Pubmed]
  20. Strain-dependent activation of monocytes and inflammatory macrophages by lipopolysaccharide of Porphyromonas gingivalis. Shapira, L., Champagne, C., Van Dyke, T.E., Amar, S. Infect. Immun. (1998) [Pubmed]
  21. Inflammation and tissue loss caused by periodontal pathogens is reduced by interleukin-1 antagonists. Delima, A.J., Karatzas, S., Amar, S., Graves, D.T. J. Infect. Dis. (2002) [Pubmed]
  22. Single-nucleotide polymorphism in the CD14 promoter and periodontal disease expression in a Japanese population. Yamazaki, K., Ueki-Maruyama, K., Oda, T., Tabeta, K., Shimada, Y., Tai, H., Nakajima, T., Yoshie, H., Herawati, D., Seymour, G.J. J. Dent. Res. (2003) [Pubmed]
  23. Attrition, eruption, and the periodontium. Newman, H.N. J. Dent. Res. (1999) [Pubmed]
  24. Therapeutic approaches to bone diseases. Rodan, G.A., Martin, T.J. Science (2000) [Pubmed]
  25. Arginine-specific gingipains from Porphyromonas gingivalis stimulate production of hepatocyte growth factor (scatter factor) through protease-activated receptors in human gingival fibroblasts in culture. Uehara, A., Muramoto, K., Imamura, T., Nakayama, K., Potempa, J., Travis, J., Sugawara, S., Takada, H. J. Immunol. (2005) [Pubmed]
  26. Fractals in pathology. Cross, S.S. J. Pathol. (1997) [Pubmed]
  27. Partial characterization of an interleukin-1-like factor in human gingival crevicular fluid from patients with chronic inflammatory periodontal disease. Kabashima, H., Maeda, K., Iwamoto, Y., Hirofuji, T., Yoneda, M., Yamashita, K., Aono, M. Infect. Immun. (1990) [Pubmed]
  28. Gingival and dermal fibroblasts produce interleukin-1 beta converting enzyme and interleukin-1 beta but not interleukin-18 even after stimulation with lipopolysaccharide. Tardif, F., Ross, G., Rouabhia, M. J. Cell. Physiol. (2004) [Pubmed]
  29. Lipoxin A(4) analogues inhibit leukocyte recruitment to Porphyromonas gingivalis: a role for cyclooxygenase-2 and lipoxins in periodontal disease. Pouliot, M., Clish, C.B., Petasis, N.A., Van Dyke, T.E., Serhan, C.N. Biochemistry (2000) [Pubmed]
  30. Lipoteichoic acid acts as an antagonist and an agonist of lipopolysaccharide on human gingival fibroblasts and monocytes in a CD14-dependent manner. Sugawara, S., Arakaki, R., Rikiishi, H., Takada, H. Infect. Immun. (1999) [Pubmed]
  31. Interleukin-17 regulates expression of the CXC chemokine LIX/CXCL5 in osteoblasts: implications for inflammation and neutrophil recruitment. Ruddy, M.J., Shen, F., Smith, J.B., Sharma, A., Gaffen, S.L. J. Leukoc. Biol. (2004) [Pubmed]
  32. Integrin activation by bacterial fimbriae through a pathway involving CD14, Toll-like receptor 2, and phosphatidylinositol-3-kinase. Harokopakis, E., Hajishengallis, G. Eur. J. Immunol. (2005) [Pubmed]
  33. Human gingival crevicular fluid contains MRP8 (S100A8) and MRP14 (S100A9), two calcium-binding proteins of the S100 family. Kojima, T., Andersen, E., Sanchez, J.C., Wilkins, M.R., Hochstrasser, D.F., Pralong, W.F., Cimasoni, G. J. Dent. Res. (2000) [Pubmed]
  34. Periodontal disease and mortality in type 2 diabetes. Saremi, A., Nelson, R.G., Tulloch-Reid, M., Hanson, R.L., Sievers, M.L., Taylor, G.W., Shlossman, M., Bennett, P.H., Genco, R., Knowler, W.C. Diabetes Care (2005) [Pubmed]
  35. Differential expression of RANKL and osteoprotegerin in gingival crevicular fluid of patients with periodontitis. Mogi, M., Otogoto, J., Ota, N., Togari, A. J. Dent. Res. (2004) [Pubmed]
  36. A survey of the reasons for dental extractions in France. Cahen, P.M., Frank, R.M., Turlot, J.C. J. Dent. Res. (1985) [Pubmed]
  37. Microbial aspects of preventive regimes in patients with overdentures. Keltjens, H.M., Schaeken, M.J., Van der Hoeven, J.S. J. Dent. Res. (1987) [Pubmed]
  38. Periodontal disease and upper genital tract inflammation in early spontaneous preterm birth. Goepfert, A.R., Jeffcoat, M.K., Andrews, W.W., Faye-Petersen, O., Cliver, S.P., Goldenberg, R.L., Hauth, J.C. Obstetrics and gynecology. (2004) [Pubmed]
WikiGenes - Universities