The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Differential patterns of extracellular signal-regulated kinase-1 and -2 phosphorylation in rat limbic brain regions after short-term and long-term inhibitory avoidance learning.

Activation of the extracellular signal-regulated kinase-1 and -2 has been shown to be required for neural plasticity and memory. Previous pharmacological studies have demonstrated that inhibition of extracellular signal-regulated kinase-1 and -2 blocks inhibitory avoidance retention. The aim of the present study was to investigate the different neural substrates underlying short- and long-term inhibitory avoidance learning and memory in rats using phosphorylated extracellular signal-regulated kinase-1 and -2 labeling as an index of plasticity. Short- and long-term retention tests were given 10 min or 24 h after inhibitory avoidance training. A significant elevation in the number of phosphorylated extracellular signal-regulated kinase-1 and -2-immunoreactive neurons was observed in area 1 of anterior cingulate cortex, the secondary motor cortex, lateral orbital cortex, claustrum, and the medial amygdala nucleus after the short-term inhibitory avoidance test. After the long-term retention test, phosphorylated extracellular signal-regulated kinase-1 and -2-immunoreactive neurons were localized in area 1 of anterior cingulate cortex, prelimbic cortex, and the central nucleus of amygdala. This suggests that phosphorylated extracellular signal-regulated kinase-1 and -2-immunoreactivity may reveal different brain regions involved in the storage of short- and long-term aversive memories.[1]

References

 
WikiGenes - Universities