The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Amygdala

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Amygdala

 

Psychiatry related information on Amygdala

  • Moreover, a single injection of morphine after SPARC infusion into the basolateral amygdala of previously uninjected mice substantially enhanced locomotor activity [6].
  • Here we report that mice lacking Ras-GRF are impaired in the process of memory consolidation, as revealed by emotional conditioning tasks that require the function of the amygdala; learning and short-term memory are intact [7].
  • We examined neural activity in rat orbitofrontal cortex and basolateral amygdala during instrumental learning in an olfactory discrimination task [8].
  • MAIN OUTCOME MEASURES: Self-reports of depressive symptoms and anxiety were measured, as were global and relative glucose metabolism in the orbitofrontal, cingulate, lateral prefrontal, and insular cortices and the amygdala, striatum, and cerebellum [9].
  • Therefore, decreased function of CREB in the central nucleus of the amygdala might regulate anxiety and alcohol intake via decreased expression of NPY, and might provide a common link between anxiety and alcohol abuse disorders [10].
 

High impact information on Amygdala

  • stathmin, a gene enriched in the amygdala, controls both learned and innate fear [11].
  • We identified the Grp gene, encoding gastrin-releasing peptide, as being highly expressed both in the lateral nucleus of the amygdala, the nucleus where associations for Pavlovian learned fear are formed, and in the regions that convey fearful auditory information to the lateral nucleus [12].
  • Neuropathological studies in the four patients who died after mussel-induced intoxication demonstrated neuronal necrosis and loss, predominantly in the hippocampus and amygdala, in a pattern similar to that observed experimentally in animals after the administration of kainic acid, which is also structurally similar to glutamate and domoic acid [13].
  • In the basolateral amygdala, endocannabinoids and CB1 were crucially involved in long-term depression of GABA (gamma-aminobutyric acid)-mediated inhibitory currents [14].
  • Dopamine-mediated modulation of odour-evoked amygdala potentials during pavlovian conditioning [15].
 

Chemical compound and disease context of Amygdala

 

Biological context of Amygdala

 

Anatomical context of Amygdala

 

Associations of Amygdala with chemical compounds

  • Second-order fear conditioning prevented by blocking NMDA receptors in amygdala [31].
  • Prompted by this finding, we injected known acetylcholine (ACh) agonists and cholinesterase (ChE) inhibitors into the rat amygdala and found that either class of agent reproduces this type of S-BD syndrome [32].
  • We have observed that DPE induces the S-BD syndrome by systemic but not intra-mygdaloid injection, whereas an oxidized DPE derivative which structurally resembles the cholinergic agonist oxotremorine is effective when injected into the amygdala [32].
  • Increased sensitivity to the stimulant effects of morphine conferred by anti-adhesive glycoprotein SPARC in amygdala [6].
  • Mechanism of the rapid effect of 17 beta-estradiol on medial amygdala neurons [33].
 

Gene context of Amygdala

  • These results provide novel evidence of a requirement of PI-3 kinase activation in the amygdala for synaptic plasticity and memory consolidation, and this activation may occur at a point upstream of MAPK activation [34].
  • The NPSR mRNA is widely distributed in the brain, including the amygdala and the midline thalamic nuclei [35].
  • Lhx6 delineates a pathway mediating innate reproductive behaviors from the amygdala to the hypothalamus [36].
  • Other regions such as hypothalamic nuclei and the central nucleus of the amygdala, also related to central CRH system but involved in the processing of the ascending visceral information and neuroendocrine-autonomic response to stress, did not show CRH-mediated ERK1/2 activation [37].
  • Behavior consistent with increased anxiety was observed principally in ERbeta mutant females and was associated with a reduced threshold for the induction of synaptic plasticity in the basolateral amygdala [38].
 

Analytical, diagnostic and therapeutic context of Amygdala

References

  1. Activity-dependent regulation of Neu differentiation factor/neuregulin expression in rat brain. Eilam, R., Pinkas-Kramarski, R., Ratzkin, B.J., Segal, M., Yarden, Y. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  2. Alpha-synuclein inclusions in amygdala in the brains of patients with the parkinsonism-dementia complex of Guam. Yamazaki, M., Arai, Y., Baba, M., Iwatsubo, T., Mori, O., Katayama, Y., Oyanagi, K. J. Neuropathol. Exp. Neurol. (2000) [Pubmed]
  3. Enhancement of central dopaminergic activity in the kainate model of temporal lobe epilepsy: implication for the mechanism of epileptic psychosis. Ando, N., Morimoto, K., Watanabe, T., Ninomiya, T., Suwaki, H. Neuropsychopharmacology (2004) [Pubmed]
  4. Lewy bodies in the amygdala: increase of alpha-synuclein aggregates in neurodegenerative diseases with tau-based inclusions. Popescu, A., Lippa, C.F., Lee, V.M., Trojanowski, J.Q. Arch. Neurol. (2004) [Pubmed]
  5. Effects of haloperidol-induced dopamine receptor supersensitivity on kindled seizure development. Gee, K.W., Killam, E.K., Hollinger, M.A. J. Pharmacol. Exp. Ther. (1983) [Pubmed]
  6. Increased sensitivity to the stimulant effects of morphine conferred by anti-adhesive glycoprotein SPARC in amygdala. Ikemoto, M., Takita, M., Imamura, T., Inoue, K. Nat. Med. (2000) [Pubmed]
  7. A role for the Ras signalling pathway in synaptic transmission and long-term memory. Brambilla, R., Gnesutta, N., Minichiello, L., White, G., Roylance, A.J., Herron, C.E., Ramsey, M., Wolfer, D.P., Cestari, V., Rossi-Arnaud, C., Grant, S.G., Chapman, P.F., Lipp, H.P., Sturani, E., Klein, R. Nature (1997) [Pubmed]
  8. Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Schoenbaum, G., Chiba, A.A., Gallagher, M. Nat. Neurosci. (1998) [Pubmed]
  9. Mood disturbances and regional cerebral metabolic abnormalities in recently abstinent methamphetamine abusers. London, E.D., Simon, S.L., Berman, S.M., Mandelkern, M.A., Lichtman, A.M., Bramen, J., Shinn, A.K., Miotto, K., Learn, J., Dong, Y., Matochik, J.A., Kurian, V., Newton, T., Woods, R., Rawson, R., Ling, W. Arch. Gen. Psychiatry (2004) [Pubmed]
  10. Anxiety and alcohol abuse disorders: a common role for CREB and its target, the neuropeptide Y gene. Pandey, S.C. Trends Pharmacol. Sci. (2003) [Pubmed]
  11. stathmin, a gene enriched in the amygdala, controls both learned and innate fear. Shumyatsky, G.P., Malleret, G., Shin, R.M., Takizawa, S., Tully, K., Tsvetkov, E., Zakharenko, S.S., Joseph, J., Vronskaya, S., Yin, D., Schubart, U.K., Kandel, E.R., Bolshakov, V.Y. Cell (2005) [Pubmed]
  12. Identification of a signaling network in lateral nucleus of amygdala important for inhibiting memory specifically related to learned fear. Shumyatsky, G.P., Tsvetkov, E., Malleret, G., Vronskaya, S., Hatton, M., Hampton, L., Battey, J.F., Dulac, C., Kandel, E.R., Bolshakov, V.Y. Cell (2002) [Pubmed]
  13. Neurologic sequelae of domoic acid intoxication due to the ingestion of contaminated mussels. Teitelbaum, J.S., Zatorre, R.J., Carpenter, S., Gendron, D., Evans, A.C., Gjedde, A., Cashman, N.R. N. Engl. J. Med. (1990) [Pubmed]
  14. The endogenous cannabinoid system controls extinction of aversive memories. Marsicano, G., Wotjak, C.T., Azad, S.C., Bisogno, T., Rammes, G., Cascio, M.G., Hermann, H., Tang, J., Hofmann, C., Zieglgänsberger, W., Di Marzo, V., Lutz, B. Nature (2002) [Pubmed]
  15. Dopamine-mediated modulation of odour-evoked amygdala potentials during pavlovian conditioning. Rosenkranz, J.A., Grace, A.A. Nature (2002) [Pubmed]
  16. Neural control of predatory aggression in wild and domesticated animals. Nikulina, E.M. Neuroscience and biobehavioral reviews. (1991) [Pubmed]
  17. Instrumental learning, but not performance, requires dopamine D1-receptor activation in the amygdala. Andrzejewski, M.E., Spencer, R.C., Kelley, A.E. Neuroscience (2005) [Pubmed]
  18. NMDA receptor antagonism in the lateral/basolateral but not central nucleus of the amygdala prevents the induction of facilitated learning in response to stress. Shors, T.J., Mathew, P.R. Learn. Mem. (1998) [Pubmed]
  19. Excitotoxic lesions of the basolateral amygdala impair the acquisition of cocaine-seeking behaviour under a second-order schedule of reinforcement. Whitelaw, R.B., Markou, A., Robbins, T.W., Everitt, B.J. Psychopharmacology (Berl.) (1996) [Pubmed]
  20. Genetically engineered GABA-producing cells demonstrate anticonvulsant effects and long-term transgene expression when transplanted into the central piriform cortex of rats. Gernert, M., Thompson, K.W., Löscher, W., Tobin, A.J. Exp. Neurol. (2002) [Pubmed]
  21. Calcium-permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala. Mahanty, N.K., Sah, P. Nature (1998) [Pubmed]
  22. Central amygdala ERK signaling pathway is critical to incubation of cocaine craving. Lu, L., Hope, B.T., Dempsey, J., Liu, S.Y., Bossert, J.M., Shaham, Y. Nat. Neurosci. (2005) [Pubmed]
  23. Acceleration of visually cued conditioned fear through the auditory pathway. Newton, J.R., Ellsworth, C., Miyakawa, T., Tonegawa, S., Sur, M. Nat. Neurosci. (2004) [Pubmed]
  24. Regulation of seizure spreading by neuroserpin and tissue-type plasminogen activator is plasminogen-independent. Yepes, M., Sandkvist, M., Coleman, T.A., Moore, E., Wu, J.Y., Mitola, D., Bugge, T.H., Lawrence, D.A. J. Clin. Invest. (2002) [Pubmed]
  25. Localization and characterization of vasopressin-binding sites in the amygdala of the rat brain. Dorsa, D.M., Petracca, F.M., Baskin, D.G., Cornett, L.E. J. Neurosci. (1984) [Pubmed]
  26. beta-Endorphin alters luteinizing hormone secretion via the amygdala but not the hypothalamus. Parvizi, N., Ellendorff, F. Nature (1980) [Pubmed]
  27. NMDA receptors of dentate gyrus granule cells participate in synaptic transmission following kindling. Mody, I., Heinemann, U. Nature (1987) [Pubmed]
  28. Identification of proopiomelanocortin neurones in rat hypothalamus by in situ cDNA-mRNA hybridization. Gee, C.E., Chen, C.L., Roberts, J.L., Thompson, R., Watson, S.J. Nature (1983) [Pubmed]
  29. Regional brain concentrations of neuropeptides in Huntington's chorea and schizophrenia. Nemeroff, C.B., Youngblood, W.W., Manberg, P.J., Prange, A.J., Kizer, J.S. Science (1983) [Pubmed]
  30. Role of mediodorsal thalamic nucleus in olfactory discrimination learning in rats. Slotnick, B.M., Kaneko, N. Science (1981) [Pubmed]
  31. Second-order fear conditioning prevented by blocking NMDA receptors in amygdala. Gewirtz, J.C., Davis, M. Nature (1997) [Pubmed]
  32. Seizure-related brain damage induced by cholinergic agents. Olney, J.W., de Gubareff, T., Labruyere, J. Nature (1983) [Pubmed]
  33. Mechanism of the rapid effect of 17 beta-estradiol on medial amygdala neurons. Nabekura, J., Oomura, Y., Minami, T., Mizuno, Y., Fukuda, A. Science (1986) [Pubmed]
  34. A role for the PI-3 kinase signaling pathway in fear conditioning and synaptic plasticity in the amygdala. Lin, C.H., Yeh, S.H., Lin, C.H., Lu, K.T., Leu, T.H., Chang, W.C., Gean, P.W. Neuron (2001) [Pubmed]
  35. Neuropeptide S: a neuropeptide promoting arousal and anxiolytic-like effects. Xu, Y.L., Reinscheid, R.K., Huitron-Resendiz, S., Clark, S.D., Wang, Z., Lin, S.H., Brucher, F.A., Zeng, J., Ly, N.K., Henriksen, S.J., de Lecea, L., Civelli, O. Neuron (2004) [Pubmed]
  36. Lhx6 delineates a pathway mediating innate reproductive behaviors from the amygdala to the hypothalamus. Choi, G.B., Dong, H.W., Murphy, A.J., Valenzuela, D.M., Yancopoulos, G.D., Swanson, L.W., Anderson, D.J. Neuron (2005) [Pubmed]
  37. Corticotropin-releasing hormone activates ERK1/2 MAPK in specific brain areas. Refojo, D., Echenique, C., Müller, M.B., Reul, J.M., Deussing, J.M., Wurst, W., Sillaber, I., Paez-Pereda, M., Holsboer, F., Arzt, E. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  38. Increased anxiety and synaptic plasticity in estrogen receptor beta -deficient mice. Krezel, W., Dupont, S., Krust, A., Chambon, P., Chapman, P.F. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  39. A locus and mechanism of action for associative morphine tolerance. Mitchell, J.M., Basbaum, A.I., Fields, H.L. Nat. Neurosci. (2000) [Pubmed]
  40. Increased dopamine release in the human amygdala during performance of cognitive tasks. Fried, I., Wilson, C.L., Morrow, J.W., Cameron, K.A., Behnke, E.D., Ackerson, L.C., Maidment, N.T. Nat. Neurosci. (2001) [Pubmed]
  41. Overexpression of acid-sensing ion channel 1a in transgenic mice increases acquired fear-related behavior. Wemmie, J.A., Coryell, M.W., Askwith, C.C., Lamani, E., Leonard, A.S., Sigmund, C.D., Welsh, M.J. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
 
WikiGenes - Universities