The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A conserved histidine-aspartate pair is required for exovinyl reduction of biliverdin by a cyanobacterial phycocyanobilin:ferredoxin oxidoreductase.

Phycocyanobilin:ferredoxin oxidoreductase is a member of the ferredoxin-dependent bilin reductase family and catalyzes two vinyl reductions of biliverdin IXalpha to produce phycocyanobilin, the pigment precursor of both phytochrome and phycobiliprotein chromophores in cyanobacteria. Atypically for ferredoxin-dependent enzymes, phycocyanobilin:ferredoxin oxidoreductase mediates direct electron transfers from reduced ferredoxin to its tetrapyrrole substrate without metal ion or organic cofactors. We previously showed that bound bilin radical intermediates could be detected by low temperature electron paramagnetic resonance and absorption spectroscopies (Tu, S., Gunn, A., Toney, M. D., Britt, R. D., and Lagarias, J. C. (2004) J. Am. Chem. Soc. 126, 8682-8693). On the basis of these studies, a mechanism involving sequential electron-coupled proton transfers to protonated bilin substrates buried within the phycocyanobilin:ferredoxin oxidoreductase protein scaffold was proposed. The present investigation was undertaken to identify catalytic residues in phycocyanobilin:ferredoxin oxidoreductase from the cyanobacterium Nostoc sp. PCC7120 through site-specific chemical modification and mutagenesis of candidate proton-donating residues. These studies identified conserved histidine and aspartate residues essential for the catalytic activity of phycocyanobilin:ferredoxin oxidoreductase. Spectroscopic evidence for the formation of stable enzyme-bound biliverdin radicals for the H85Q and D102N mutants support their role as a "coupled" proton-donating pair during the reduction of the biliverdin exovinyl group.[1]

References

 
WikiGenes - Universities