The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

SureCN726701     3-[2-[[3-(2-carboxyethyl)-5- [(4-ethenyl-3...

Synonyms: AG-F-65534, AG-K-55323, SureCN5079699, CTK0H6053, CTK4J1272, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of dehydrobilirubin

  • RESULTS: Biliverdin significantly improved survival of recipients following SITx after prolonged intestinal ischemia (6 hours) [1].
  • Phytobilins (light harvesting and photoreceptor pigments in higher plants, algae, and cyanobacteria) are synthesized from biliverdin IXalpha (BV) by ferredoxin-dependent bilin reductases (FDBRs) [2].
  • The enzyme is expressed at high levels as a soluble catalytically active protein that results in the accumulation of biliverdin within the E. coli cells [3].
  • Biliverdin binds covalently to agrobacterium phytochrome Agp1 via its ring A vinyl side chain [4].
  • Hmu O, a heme degradation enzyme in the pathogen Corynebacterium diphtheriae, catalyzes the oxygen-dependent conversion of hemin to biliverdin, carbon monoxide, and free iron [5].
 

High impact information on dehydrobilirubin

  • Both their presence in many diverse bacteria and their simplified assembly with biliverdin suggest that BphPs are the progenitors of phytochrome-type photoreceptors [6].
  • In some cases, a unique haem oxygenase responsible for the synthesis of biliverdin is part of the BphP operon [6].
  • Little is known about the structures of the ring-cleaving enzymes responsible, although microsomal haem oxygenase, which catalyses the breakdown of haem to biliverdin in mammals, has very similar spectroscopic properties to myoglobin [7].
  • Both, however, catalyze oxidation of heme to biologically active molecules: iron, a gene regulator; biliverdin, an antioxidant; and carbon monoxide, a heme ligand [8].
  • In contrast, 10 microM biliverdin, another HO-dependent metabolite of heme, had no effect [9].
 

Chemical compound and disease context of dehydrobilirubin

 

Biological context of dehydrobilirubin

  • A comparison of the mechanisms by which biliverdin exerted these salutary effects compared with inhalation of CO, which we previously showed had salutary effects, suggests that the 2 compounds (biliverdin and CO) exert their effects in part by different mechanisms [1].
  • The results define an approach to produce dorsal axis-deficient embryos by photo-transforming its biliverdin by irradiation with 366-nm UV light and identify an unsuspected role for biliverdin IXalpha in X. laevis embryogenesis [14].
  • These results showed that hydrolysis is not an obligatory step in the conversion of verdohemochrome to biliverdin and, moreover, indicated how heme can be converted, with verdohemochrome as an intermediate, into biliverdin in which the two terminal oxygen atoms are derived from different O2 molecules [15].
  • Here, we generated mice lacking functional heme oxygenase 1 (Hmox1; EC 1.14.99.3), which catabolizes heme to biliverdin, carbon monoxide, and free iron, to assess its participation in iron homeostasis [16].
  • Heme oxygenase (HO-1) provides a cellular defense mechanism during oxidative stress and catalyzes the rate-limiting step in heme metabolism that produces biliverdin (BV) [17].
 

Anatomical context of dehydrobilirubin

  • Biliverdin treatment (1) led to a significant decrease in mRNA expression of iNOS, Cox-2, and ICAM-1 as well as the inflammatory cytokines IL-6 and IL-1beta; (2) decreased neutrophil infiltration into the jejunal muscularis; and (3) prevented SITx-induced suppression of intestinal circular muscle contractility [1].
  • Biliverdin reductase in a stable form was purified to homogeneity from rat liver cytosol [18].
  • The heme oxygenase system in the microsomes from pig spleen, rat spleen, and rat kidney also failed to oxidize Co-heme to biliverdin [19].
  • Our results indicate that lipid peroxidation is a significant cause of NO-induced necrosis in human lung epithelial cells, and that the increased NO survival of L1 cells is due at least in part to decreased lipid peroxidation mediated by HO-1-generated biliverdin or bilirubin [20].
  • Utilizing an in vitro coupled assay system, we show that isolated plastids from cucumber cotyledons convert the linear tetrapyrrole biliverdin IX alpha to the free phytochrome chromophore, phytochromobilin, which assembles with oat apophytochrome to yield photoactive holoprotein [21].
 

Associations of dehydrobilirubin with other chemical compounds

 

Gene context of dehydrobilirubin

 

Analytical, diagnostic and therapeutic context of dehydrobilirubin

References

  1. Biliverdin protects the functional integrity of a transplanted syngeneic small bowel. Nakao, A., Otterbein, L.E., Overhaus, M., Sarady, J.K., Tsung, A., Kimizuka, K., Nalesnik, M.A., Kaizu, T., Uchiyama, T., Liu, F., Murase, N., Bauer, A.J., Bach, F.H. Gastroenterology (2004) [Pubmed]
  2. Crystal structure of phycocyanobilin:ferredoxin oxidoreductase in complex with biliverdin IXalpha, a key enzyme in the biosynthesis of phycocyanobilin. Hagiwara, Y., Sugishima, M., Takahashi, Y., Fukuyama, K. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  3. Expression and characterization of a heme oxygenase (Hmu O) from Corynebacterium diphtheriae. Iron acquisition requires oxidative cleavage of the heme macrocycle. Wilks, A., Schmitt, M.P. J. Biol. Chem. (1998) [Pubmed]
  4. Biliverdin binds covalently to agrobacterium phytochrome Agp1 via its ring A vinyl side chain. Lamparter, T., Michael, N., Caspani, O., Miyata, T., Shirai, K., Inomata, K. J. Biol. Chem. (2003) [Pubmed]
  5. Heme degradation as catalyzed by a recombinant bacterial heme oxygenase (Hmu O) from Corynebacterium diphtheriae. Chu, G.C., Katakura, K., Zhang, X., Yoshida, T., Ikeda-Saito, M. J. Biol. Chem. (1999) [Pubmed]
  6. Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore. Bhoo, S.H., Davis, S.J., Walker, J., Karniol, B., Vierstra, R.D. Nature (2001) [Pubmed]
  7. Orientation of oxygen in oxyhaemoproteins and its implications for haem catabolism. Brown, S.B., Chabot, A.A., Enderby, E.A., North, A.C. Nature (1981) [Pubmed]
  8. The heme oxygenase system: a regulator of second messenger gases. Maines, M.D. Annu. Rev. Pharmacol. Toxicol. (1997) [Pubmed]
  9. Carbon monoxide stimulates the apical 70-pS K+ channel of the rat thick ascending limb. Liu, H., Mount, D.B., Nasjletti, A., Wang, W. J. Clin. Invest. (1999) [Pubmed]
  10. Transcriptional activation of heme oxygenase-1 and its functional significance in acetaminophen-induced hepatitis and hepatocellular injury in the rat. Bauer, I., Vollmar, B., Jaeschke, H., Rensing, H., Kraemer, T., Larsen, R., Bauer, M. J. Hepatol. (2000) [Pubmed]
  11. Heme oxygenase-1 inhibits apoptosis in Caco-2 cells via activation of Akt pathway. Busserolles, J., Megías, J., Terencio, M.C., Alcaraz, M.J. Int. J. Biochem. Cell Biol. (2006) [Pubmed]
  12. Induced-fitting and electrostatic potential change of PcyA upon substrate binding demonstrated by the crystal structure of the substrate-free form. Hagiwara, Y., Sugishima, M., Takahashi, Y., Fukuyama, K. FEBS Lett. (2006) [Pubmed]
  13. Biliverdin-induced brainstem auditory evoked potential abnormalities in the jaundiced Gunn rat. Rice, A.C., Shapiro, S.M. Brain Res. (2006) [Pubmed]
  14. A role for biliverdin IXalpha in dorsal axis development of Xenopus laevis embryos. Falchuk, K.H., Contin, J.M., Dziedzic, T.S., Feng, Z., French, T.C., Heffron, G.J., Montorzi, M. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  15. Verdohemochrome IX alpha: preparation and oxidoreductive cleavage to biliverdin IX alpha. Saito, S., Itano, H.A. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  16. Heme oxygenase 1 is required for mammalian iron reutilization. Poss, K.D., Tonegawa, S. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  17. Biliverdin therapy protects rat livers from ischemia and reperfusion injury. Fondevila, C., Shen, X.D., Tsuchiyashi, S., Yamashita, K., Csizmadia, E., Lassman, C., Busuttil, R.W., Kupiec-Weglinski, J.W., Bach, F.H. Hepatology (2004) [Pubmed]
  18. Purification and characterization of biliverdin reductase from rat liver. Kutty, R.K., Maines, M.D. J. Biol. Chem. (1981) [Pubmed]
  19. Reaction of the microsomal heme oxygenase with cobaltic protoporphyrin IX, and extremely poor substrate. Yoshida, T., Kikuchi, G. J. Biol. Chem. (1978) [Pubmed]
  20. Resistance to Nitric Oxide-induced Necrosis in Heme Oxygenase-1 Overexpressing Pulmonary Epithelial Cells Associated with Decreased Lipid Peroxidation. Reiter, T.A., Pang, B., Dedon, P., Demple, B. J. Biol. Chem. (2006) [Pubmed]
  21. Holophytochrome assembly. Coupled assay for phytochromobilin synthase in organello. Terry, M.J., Lagarias, J.C. J. Biol. Chem. (1991) [Pubmed]
  22. Hepatic disposition and biliary excretion of bilirubin and bilirubin glucuronides in intact rats. Differential processing of pigments derived from intra- and extrahepatic sources. Crawford, J.M., Ransil, B.J., Potter, C.S., Westmoreland, S.V., Gollan, J.L. J. Clin. Invest. (1987) [Pubmed]
  23. Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury. Doré, S., Takahashi, M., Ferris, C.D., Zakhary, R., Hester, L.D., Guastella, D., Snyder, S.H. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  24. Inhibition of human cationic glutathione S-transferase by nonsubstrate ligands. Boyer, T.D., Vessey, D.A. Hepatology (1987) [Pubmed]
  25. Heme oxygenase-1 and its reaction product, carbon monoxide, prevent inflammation-related apoptotic liver damage in mice. Sass, G., Soares, M.C., Yamashita, K., Seyfried, S., Zimmermann, W.H., Eschenhagen, T., Kaczmarek, E., Ritter, T., Volk, H.D., Tiegs, G. Hepatology (2003) [Pubmed]
  26. Endoplasmic reticulum stress stimulates heme oxygenase-1 gene expression in vascular smooth muscle. Role in cell survival. Liu, X.M., Peyton, K.J., Ensenat, D., Wang, H., Schafer, A.I., Alam, J., Durante, W. J. Biol. Chem. (2005) [Pubmed]
  27. Small interference RNA-mediated gene silencing of human biliverdin reductase, but not that of heme oxygenase-1, attenuates arsenite-mediated induction of the oxygenase and increases apoptosis in 293A kidney cells. Miralem, T., Hu, Z., Torno, M.D., Lelli, K.M., Maines, M.D. J. Biol. Chem. (2005) [Pubmed]
  28. Biliverdin reductase, a novel regulator for induction of activating transcription factor-2 and heme oxygenase-1. Kravets, A., Hu, Z., Miralem, T., Torno, M.D., Maines, M.D. J. Biol. Chem. (2004) [Pubmed]
  29. Effect of targeted deletion of the heme oxygenase-2 gene on hemoglobin toxicity in the striatum. Qu, Y., Chen, J., Benvenisti-Zarom, L., Ma, X., Regan, R.F. J. Cereb. Blood Flow Metab. (2005) [Pubmed]
  30. Aryl hydrocarbon receptor-dependent induction of cyp1a1 by bilirubin in mouse hepatoma hepa 1c1c7 cells. Sinal, C.J., Bend, J.R. Mol. Pharmacol. (1997) [Pubmed]
  31. The Arabidopsis HY2 gene encodes phytochromobilin synthase, a ferredoxin-dependent biliverdin reductase. Kohchi, T., Mukougawa, K., Frankenberg, N., Masuda, M., Yokota, A., Lagarias, J.C. Plant Cell (2001) [Pubmed]
  32. (3Z)- and (3E)-phytochromobilin are intermediates in the biosynthesis of the phytochrome chromophore. Terry, M.J., McDowell, M.T., Lagarias, J.C. J. Biol. Chem. (1995) [Pubmed]
  33. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase. Wang, J., de Montellano, P.R. J. Biol. Chem. (2003) [Pubmed]
 
WikiGenes - Universities