The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

AC1L9H0F     3-[2-[[3-(2-carboxyethyl)-5- [(4-ethyl-3...

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of phycocyanobilin

  • The cyanobacterium Synechococcus sp. PCC 7002 has eight distinct bilin attachment sites on seven polypeptides, all of which carry the same chromophore, phycocyanobilin [1].
  • Fully segregated Synechocystis sp. PCC 6803 bvdR interposon mutants produce approximately 85% of the normal amount of phycobilisome cores containing allophycocyanin and other phycocyanobilin-bearing core polypeptides, but no detectable phycocyanin [2].
  • Together with other bilins such as phycocyanobilin it serves as a light-harvesting pigment in the photosynthetic light-harvesting structures of cyanobacteria called phycobilisomes [3].
  • Reconstitution of blue-green reversible photoconversion of a cyanobacterial photoreceptor, PixJ1, in phycocyanobilin-producing Escherichia coli [4].
  • We show that free biliverdin or phycocyanobilin, highly enriched in the ZZE isomer, can easily be obtained from chromophores bound in a noncovalent manner to Agrobacterium phytochrome Agp1, and used for spectral assays [5].

High impact information on phycocyanobilin


Chemical compound and disease context of phycocyanobilin


Biological context of phycocyanobilin

  • The ease of co-valent adduct formation strongly suggests that the ethylidene side chain is an important binding site of phycocyanobilin to the polypeptide chain [13].
  • The amino acid sequences of the alpha and beta subunits of C. caldarium phycocyanin are also similar, and by proper alignment of the sequences it can be shown that the beta subunit contains a 12-residue insertion where the second phycocyanobilin chromophore is covalently attached [14].
  • Novel activity of a phycobiliprotein lyase: both the attachment of phycocyanobilin and the isomerization to phycoviolobilin are catalyzed by the proteins PecE and PecF encoded by the phycoerythrocyanin operon [15].
  • Genes for the apo-phycoerythrocyanin alpha subunit (pecA) and the heterodimeric lyase/isomerase (pecE and pecF), which catalyzes both the covalent attachment of phycocyanobilin and its concurrent isomerization to phycobiliviolin, were expressed from the trc promoter on a second plasmid [16].
  • The nucleotide sequence extending 3' from RPCII genes in strain WH8020 revealed two open reading frames homologous to components of an alpha CPC phycocyanobilin lyase [17].

Anatomical context of phycocyanobilin


Associations of phycocyanobilin with other chemical compounds

  • The results indicate that the transformation of biliverdin to phycocyanobilin catalyzed by C. caldarium extracts is a ferredoxin-linked reduction process [20].
  • Kinetic measurements establish that although the chromophore binding site on apophytochrome is best tailored to phytochromobilin, apophytochrome will accommodate the two analogs with modified D-rings, phycocyanobilin and phycoerythrobilin [21].
  • Methanol adduct formation of phycocyanobilin can occur subsequent to cleavage and requires acid catalysis [13].
  • An enzyme extract from the phycocyanin-containing unicellular rhodophyte, Cyanidium caldarium, reductively transforms biliverdin IX alpha to phycocyanobilin, the chromophore of phycocyanin, in the presence of NADPH [22].
  • In parallel, the local increase in the medium pH associated with protonation then forwards a deprotonation at an acidic NH-group so that in effect both protonated and deprotonated phycocyanobilin would arise from the initial photoreaction and account for the observed red shift in the spectra of the B- and C-forms [23].

Gene context of phycocyanobilin


Analytical, diagnostic and therapeutic context of phycocyanobilin

  • After trypsin digestion and reverse phase high performance liquid chromatography, the CpcT reaction product produced one major phycocyanobilin-containing peptide [29].
  • Assignments of the Pfr-Pr FTIR difference spectrum of cyanobacterial phytochrome Cph1 using 15N and 13C isotopically labeled phycocyanobilin chromophore [30].
  • Structural factors important for binding are (i) the presence of a central metal with open ligation site, which even induces binding of phycocyanobilin, and (ii) the absence of the hydrophobic esterifying alcohol, phytol [31].


  1. Phycocyanin alpha-subunit phycocyanobilin lyase. Fairchild, C.D., Zhao, J., Zhou, J., Colson, S.E., Bryant, D.A., Glazer, A.N. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  2. Characterization of cyanobacterial biliverdin reductase. Conversion of biliverdin to bilirubin is important for normal phycobiliprotein biosynthesis. Schluchter, W.M., Glazer, A.N. J. Biol. Chem. (1997) [Pubmed]
  3. Insights into Phycoerythrobilin Biosynthesis Point toward Metabolic Channeling. Dammeyer, T., Frankenberg-Dinkel, N. J. Biol. Chem. (2006) [Pubmed]
  4. Reconstitution of blue-green reversible photoconversion of a cyanobacterial photoreceptor, PixJ1, in phycocyanobilin-producing Escherichia coli. Yoshihara, S., Shimada, T., Matsuoka, D., Zikihara, K., Kohchi, T., Tokutomi, S. Biochemistry (2006) [Pubmed]
  5. Agrobacterium phytochrome as an enzyme for the production of ZZE bilins. Lamparter, T., Michael, N. Biochemistry (2005) [Pubmed]
  6. Crystal structure of phycocyanobilin:ferredoxin oxidoreductase in complex with biliverdin IXalpha, a key enzyme in the biosynthesis of phycocyanobilin. Hagiwara, Y., Sugishima, M., Takahashi, Y., Fukuyama, K. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  7. Characterization of recombinant phytochrome from the cyanobacterium Synechocystis. Lamparter, T., Mittmann, F., Gärtner, W., Börner, T., Hartmann, E., Hughes, J. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  8. A conserved histidine-aspartate pair is required for exovinyl reduction of biliverdin by a cyanobacterial phycocyanobilin:ferredoxin oxidoreductase. Tu, S.L., Sughrue, W., Britt, R.D., Lagarias, J.C. J. Biol. Chem. (2006) [Pubmed]
  9. Chromophore attachment to phycobiliprotein beta-subunits: phycocyanobilin:cysteine-beta84 phycobiliprotein lyase activity of CpeS-like protein from Anabaena Sp. PCC7120. Zhao, K.H., Su, P., Li, J., Tu, J.M., Zhou, M., Bubenzer, C., Scheer, H. J. Biol. Chem. (2006) [Pubmed]
  10. Phycocyanobilin:ferredoxin oxidoreductase of Anabaena sp. PCC 7120. Biochemical and spectroscopic. Frankenberg, N., Lagarias, J.C. J. Biol. Chem. (2003) [Pubmed]
  11. Ultrafast dynamics of phytochrome from the cyanobacterium synechocystis, reconstituted with phycocyanobilin and phycoerythrobilin. Heyne, K., Herbst, J., Stehlik, D., Esteban, B., Lamparter, T., Hughes, J., Diller, R. Biophys. J. (2002) [Pubmed]
  12. Raman spectroscopic and light-induced kinetic characterization of a recombinant phytochrome of the cyanobacterium Synechocystis. Remberg, A., Lindner, I., Lamparter, T., Hughes, J., Kneip, C., Hildebrandt, P., Braslavsky, S.E., Gärtner, W., Schaffner, K. Biochemistry (1997) [Pubmed]
  13. Cleavage of phycocyanobilin from C-phycocyanin. Separation and mass spectral identification of the products. Beuhler, R.J., Pierce, R.C., Friedman, L., Siegelman, H.W. J. Biol. Chem. (1976) [Pubmed]
  14. Primary structure of phycocyanin from the unicellular rhodophyte Cyanidium caldarium. II. Complete amino acid sequence of the beta subunit. Troxler, R.F., Ehrhardt, M.M., Brown-Mason, A.S., Offner, G.D. J. Biol. Chem. (1981) [Pubmed]
  15. Novel activity of a phycobiliprotein lyase: both the attachment of phycocyanobilin and the isomerization to phycoviolobilin are catalyzed by the proteins PecE and PecF encoded by the phycoerythrocyanin operon. Zhao, K.H., Deng, M.G., Zheng, M., Zhou, M., Parbel, A., Storf, M., Meyer, M., Strohmann, B., Scheer, H. FEBS Lett. (2000) [Pubmed]
  16. Biosynthesis of the cyanobacterial light-harvesting polypeptide phycoerythrocyanin holo-alpha subunit in a heterologous host. Tooley, A.J., Glazer, A.N. J. Bacteriol. (2002) [Pubmed]
  17. Genes of the R-phycocyanin II locus of marine Synechococcus spp., and comparison of protein-chromophore interactions in phycocyanins differing in bilin composition. de Lorimier, R., Wilbanks, S.M., Glazer, A.N. Plant Mol. Biol. (1993) [Pubmed]
  18. In vivo characterization of phytochrome-phycocyanobilin adducts in yeast. Kunkel, T., Speth, V., Büche, C., Schäfer, E. J. Biol. Chem. (1995) [Pubmed]
  19. Phycobiliprotein synthesis in protoplasts of the unicellular cyanophyte, Anacystis nidulans. Cosner, J.C., Troxler, R.F. Biochim. Biophys. Acta (1978) [Pubmed]
  20. Biosynthesis of phycobilins. Ferredoxin-mediated reduction of biliverdin catalyzed by extracts of Cyanidium caldarium. Beale, S.I., Cornejo, J. J. Biol. Chem. (1991) [Pubmed]
  21. Phytochrome assembly. Defining chromophore structural requirements for covalent attachment and photoreversibility. Li, L., Lagarias, J.C. J. Biol. Chem. (1992) [Pubmed]
  22. Biosynthesis of phycobilins. 3(Z)-phycoerythrobilin and 3(Z)-phycocyanobilin are intermediates in the formation of 3(E)-phycocyanobilin from biliverdin IX alpha. Beale, S.I., Cornejo, J. J. Biol. Chem. (1991) [Pubmed]
  23. The excited-state chemistry of phycocyanobilin: a semiempirical study. Göller, A.H., Strehlow, D., Hermann, G. Chemphyschem : a European journal of chemical physics and physical chemistry. (2005) [Pubmed]
  24. Selective inhibition of cyclooxygenase-2 by C-phycocyanin, a biliprotein from Spirulina platensis. Reddy, C.M., Bhat, V.B., Kiranmai, G., Reddy, M.N., Reddanna, P., Madyastha, K.M. Biochem. Biophys. Res. Commun. (2000) [Pubmed]
  25. Oligomeric structure, enzyme kinetics, and substrate specificity of the phycocyanin alpha subunit phycocyanobilin lyase. Fairchild, C.D., Glazer, A.N. J. Biol. Chem. (1994) [Pubmed]
  26. Genes encoding the phycobilisome rod substructure are clustered on the Anabaena chromosome: characterization of the phycoerythrocyanin operon. Swanson, R.V., de Lorimier, R., Glazer, A.N. J. Bacteriol. (1992) [Pubmed]
  27. Functional analysis of yeast-derived phytochrome A and B phycocyanobilin adducts. Kunkel, T., Neuhaus, G., Batschauer, A., Chua, N.H., Schäfer, E. Plant J. (1996) [Pubmed]
  28. Defining the bilin lyase domain: lessons from the extended phytochrome superfamily. Wu, S.H., Lagarias, J.C. Biochemistry (2000) [Pubmed]
  29. Identification and characterization of a new class of bilin lyase: the cpcT gene encodes a bilin lyase responsible for attachment of phycocyanobilin to Cys-153 on the beta-subunit of phycocyanin in Synechococcus sp. PCC 7002. Shen, G., Saunée, N.A., Williams, S.R., Gallo, E.F., Schluchter, W.M., Bryant, D.A. J. Biol. Chem. (2006) [Pubmed]
  30. Assignments of the Pfr-Pr FTIR difference spectrum of cyanobacterial phytochrome Cph1 using 15N and 13C isotopically labeled phycocyanobilin chromophore. van Thor, J.J., Fisher, N., Rich, P.R. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical. (2005) [Pubmed]
  31. Myoglobin with modified tetrapyrrole chromophores: binding specificity and photochemistry. Pröll, S., Wilhelm, B., Robert, B., Scheer, H. Biochim. Biophys. Acta (2006) [Pubmed]
WikiGenes - Universities