The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Modulation of uridine phosphorylase gene expression by tumor necrosis factor-alpha enhances the antiproliferative activity of the capecitabine intermediate 5'-deoxy-5-fluorouridine in breast cancer cells.

Uridine phosphorylase (UPase) has been shown to play an important role in the antineoplastic activity of 5-fluorouracil (5-FU) and in the anabolism of its oral prodrug, capecitabine, through the conversion of 5'-deoxy-5-fluorouridine (5'-DFUR) into 5-FU. In this study, we investigated the effect of tumor necrosis factor-alpha (TNF-alpha) on UPase gene expression and 5'-DFUR antiproliferative activity and elucidated the involved signal transduction pathway. Our data indicate that TNF-alpha significantly induced UPase mRNA expression and its enzymatic activity in EMT6 murine breast cancer cells, leading to an enhanced cytotoxicity of 5'-DFUR. This is further confirmed by an increased incorporation of 5'-DFUR-originated 5-FU nucleotides into nucleic acids. To clarify the mechanism of TNF-alpha- induced UPase expression, we first observed the effect of TNF-alpha on the UPase promoter activity with a series of 5'-deleted promoter-luciferase constructs. Transient transfection analysis showed that the TNF-alpha-inductive pattern in EMT6 cells was consistent with the presence of a nuclear factor-kappaB (NF-kappaB) binding element (-1332/-1312 bp) in the UPase promoter region. Furthermore, electrophoretic mobility shift assays, supershift, and cotransfection assays revealed that the activation of p65 was responsible for UPase induction by TNF-alpha. Finally, the induction of UPase by TNF-alpha could be suppressed by PS-341, a NF-kappaB inhibitor. In summary, TNF-alpha efficiently induces UPase gene expression through a NF-kappaB subunit p65-dependent pathway enhancing cell sensitivity to 5'-DFUR. The elucidation of this regulation mechanism may aid in the clinical use of 5-FU-based chemotherapy.[1]

References

 
WikiGenes - Universities