The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Tamoxifen and estradiol interact with the flavin mononucleotide site of complex I leading to mitochondrial failure.

This study evaluated the action of tamoxifen and estradiol on the function of isolated liver mitochondria. We observed that although tamoxifen and estradiol per se did not affect mitochondrial complexes II, III, or IV, complex I is affected, this effect being more drastic (except for state 4 of respiration) when mitochondria were coincubated with both drugs. Furthermore, using two respiratory chain inhibitors, rotenone and diphenyliodonium chloride, we identified the flavin mononucleotide site of complex I as the target of tamoxifen and/or estradiol action(s). Tamoxifen (25 microm) per se induced a significant increase in hydrogen peroxide production and state 4 of respiration. Additionally, a significant decrease in respiratory control ratio, transmembrane, and depolarization potentials were observed. Estradiol per se decreased carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP)-stimulated respiration, state 3 of respiration, and respiratory control ratio and increased lag phase of repolarization. With the exception of state 4 of respiration whose increase induced by tamoxifen was reversed by the presence of estradiol, the effects of tamoxifen were highly exacerbated when estradiol was present. We observed that 10 microm tamoxifen in the presence of estradiol affected mitochondria significantly by decreasing FCCP-stimulated respiration, state 3 of respiration, respiratory control ratio, and ADP depolarization and increasing the lag phase of repolarization. All of the deleterious effects induced by 25 microm tamoxifen were highly exacerbated in the presence of estradiol. Furthermore, we observed that the effects of both compounds were independent of estrogen receptors because the pure estrogen antagonist ICI 182,780 did not interfere with tamoxifen and/or estradiol detrimental effects. Altogether, our data provide a mechanistic explanation for the multiple cytotoxic effects of tamoxifen including its capacity to destroy tamoxifen-resistant breast cancer cells in the presence of estradiol. This new piece of information provides a basis for the development of new and promising anticancer therapeutic strategies.[1]

References

  1. Tamoxifen and estradiol interact with the flavin mononucleotide site of complex I leading to mitochondrial failure. Moreira, P.I., Custódio, J., Moreno, A., Oliveira, C.R., Santos, M.S. J. Biol. Chem. (2006) [Pubmed]
 
WikiGenes - Universities