The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

AG-D-09349     diphenyliodanium

Synonyms: CTK0H4267, STK325714, LS-171794, AKOS005430407, AC1L20K2, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of diphenyliodanium

  • Induction of NOS 2 by IL-1beta+TNF-alpha was significantly attenuated by concomitant exposure of EC to hypoxia or treatment of EC with antioxidants such as tiron, diphenyliodonium, and catalase, suggesting that NOS 2 expression is dependent on the production of reactive oxygen species [1].
  • Diphenyliodonium showed no effect on the toxicity induced by 24 h exposure to non-N-methyl-D-aspartate receptor agonists [2].
  • In addition, both SNP and DIFP produced slight bradycardia and reduced negative dP/dt [3].
 

High impact information on diphenyliodanium

 

Chemical compound and disease context of diphenyliodanium

 

Biological context of diphenyliodanium

 

Anatomical context of diphenyliodanium

  • DPI, an inhibitor of the NADPH oxidase complex of neutrophils and other flavoproteins, also inhibited the TGF-beta 1-induced H2O2 production [15].
  • Rabbit aortas submitted to ex vivo overdistension in the presence of the spin trap DEPMPO (5-diethoxy-phosphoryl-5-methyl-1-pyrroline-N-oxide, 100 mmol/l, n = 5) showed formation of radical adduct spectra, abolished by DPI or superoxide dismutase [16].
  • Reoxygenated astrocytes generated oxygen free radicals early after replacement into ambient air, and addition of diphenyliodonium, an NADPH oxidase inhibitor, diminished the generation of free radicals as well as the induction of several bands on fluorogram [17].
  • The hypoxia-induced increase in nervous chemoreceptor discharge and the reduction of FAD and NAD(P)+ were also inhibited by DPI (10 microM) [18].
  • Modulation by both diphenyliodonium and diphenyleneiodonium of [3H]MK-801 binding to rat brain synaptic membranes [19].
 

Associations of diphenyliodanium with other chemical compounds

 

Gene context of diphenyliodanium

 

Analytical, diagnostic and therapeutic context of diphenyliodanium

References

  1. Modulation of inducible nitric oxide synthase by hypoxia in pulmonary artery endothelial cells. Zulueta, J.J., Sawhney, R., Kayyali, U., Fogel, M., Donaldson, C., Huang, H., Lanzillo, J.J., Hassoun, P.M. Am. J. Respir. Cell Mol. Biol. (2002) [Pubmed]
  2. Protection by diphenyliodonium against glutamate neurotoxicity due to blocking of N-methyl-D-aspartate receptors. Nakamura, Y., Tsuji, K., Shuto, M., Ogita, K., Yoneda, Y., Shimamoto, K., Shibata, T., Kataoka, K. Neuroscience (1997) [Pubmed]
  3. A structurally novel stimulator of guanylate cyclase with long-lasting hypotensive activity in the dog. Pettibone, D.J., Sweet, C.S., Risley, E.A., Kennedy, T. Eur. J. Pharmacol. (1985) [Pubmed]
  4. Potential role of a membrane-bound NADH oxidoreductase in nitric oxide release and arterial relaxation to nitroprusside. Mohazzab-H, K.M., Kaminski, P.M., Agarwal, R., Wolin, M.S. Circ. Res. (1999) [Pubmed]
  5. Endothelial NADPH oxidase as the source of oxidants in lungs exposed to ischemia or high K+. Al-Mehdi, A.B., Zhao, G., Dodia, C., Tozawa, K., Costa, K., Muzykantov, V., Ross, C., Blecha, F., Dinauer, M., Fisher, A.B. Circ. Res. (1998) [Pubmed]
  6. Resveratrol inhibits drug-induced apoptosis in human leukemia cells by creating an intracellular milieu nonpermissive for death execution. Ahmad, K.A., Clement, M.V., Hanif, I.M., Pervaiz, S. Cancer Res. (2004) [Pubmed]
  7. Oxidative metabolism modulates signal transduction and micronucleus formation in bystander cells from alpha-particle-irradiated normal human fibroblast cultures. Azzam, E.I., De Toledo, S.M., Spitz, D.R., Little, J.B. Cancer Res. (2002) [Pubmed]
  8. Inhibition of macrophage and endothelial cell nitric oxide synthase by diphenyleneiodonium and its analogs. Stuehr, D.J., Fasehun, O.A., Kwon, N.S., Gross, S.S., Gonzalez, J.A., Levi, R., Nathan, C.F. FASEB J. (1991) [Pubmed]
  9. Oxygen-elicited responses in calf coronary arteries: role of H2O2 production via NADH-derived superoxide. Mohazzab-H, K.M., Kaminski, P.M., Fayngersh, R.P., Wolin, M.S. Am. J. Physiol. (1996) [Pubmed]
  10. Superoxide as an intermediate signal for serotonin-induced mitogenesis. Lee, S.L., Wang, W.W., Fanburg, B.L. Free Radic. Biol. Med. (1998) [Pubmed]
  11. Interaction of alpha-phenyl-N-tert-butyl nitrone and alternative electron acceptors with complex I indicates a substrate reduction site upstream from the rotenone binding site. Hensley, K., Pye, Q.N., Maidt, M.L., Stewart, C.A., Robinson, K.A., Jaffrey, F., Floyd, R.A. J. Neurochem. (1998) [Pubmed]
  12. Endothelial-derived superoxide anions in pig coronary arteries: evidence from lucigenin chemiluminescence and histochemical techniques. Brandes, R.P., Barton, M., Philippens, K.M., Schweitzer, G., Mügge, A. J. Physiol. (Lond.) (1997) [Pubmed]
  13. Extracellular alkalosis activates ERK mitogen-activated protein kinase of vascular smooth muscle cells through NADPH-mediated formation of reactive oxygen species. Susa, S., Wakabayashi, I. FEBS Lett. (2003) [Pubmed]
  14. Biotransformation of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) by denitrifying Pseudomonas sp. strain FA1. Bhushan, B., Paquet, L., Spain, J.C., Hawari, J. Appl. Environ. Microbiol. (2003) [Pubmed]
  15. Activation of an H2O2-generating NADH oxidase in human lung fibroblasts by transforming growth factor beta 1. Thannickal, V.J., Fanburg, B.L. J. Biol. Chem. (1995) [Pubmed]
  16. Vascular oxidant stress early after balloon injury: evidence for increased NAD(P)H oxidoreductase activity. Souza, H.P., Souza, L.C., Anastacio, V.M., Pereira, A.C., Junqueira, M.L., Krieger, J.E., da Luz, P.L., Augusto, O., Laurindo, F.R. Free Radic. Biol. Med. (2000) [Pubmed]
  17. Metabolic and biosynthetic alterations in cultured astrocytes exposed to hypoxia/reoxygenation. Hori, O., Matsumoto, M., Maeda, Y., Ueda, H., Ohtsuki, T., Stern, D.M., Kinoshita, T., Ogawa, S., Kamada, T. J. Neurochem. (1994) [Pubmed]
  18. Involvement of an NAD(P)H oxidase as a pO2 sensor protein in the rat carotid body. Cross, A.R., Henderson, L., Jones, O.T., Delpiano, M.A., Hentschel, J., Acker, H. Biochem. J. (1990) [Pubmed]
  19. Modulation by both diphenyliodonium and diphenyleneiodonium of [3H]MK-801 binding to rat brain synaptic membranes. Shuto, M., Ogita, K., Yoneda, Y. Neurochem. Int. (1997) [Pubmed]
  20. Oxidative protein cross-linking reactions involving L-tyrosine in transforming growth factor-beta1-stimulated fibroblasts. Larios, J.M., Budhiraja, R., Fanburg, B.L., Thannickal, V.J. J. Biol. Chem. (2001) [Pubmed]
  21. Involvement of an NAD(P)H oxidase-like enzyme in superoxide anion and hydrogen peroxide generation by rat type II cells. van Klaveren, R.J., Roelant, C., Boogaerts, M., Demedts, M., Nemery, B. Thorax (1997) [Pubmed]
  22. NADPH oxidase inhibitor diphenyliodonium abolishes lipopolysaccharide-induced down-regulation of transferrin receptor expression in N2a and BV-2 cells. Reis, K., Hälldin, J., Fernaeus, S., Pettersson, C., Land, T. J. Neurosci. Res. (2006) [Pubmed]
  23. Glutathione regulates transforming growth factor-beta-stimulated collagen production in fibroblasts. Liu, R.M., Liu, Y., Forman, H.J., Olman, M., Tarpey, M.M. Am. J. Physiol. Lung Cell Mol. Physiol. (2004) [Pubmed]
  24. Stretch enhances contraction of bovine coronary arteries via an NAD(P)H oxidase-mediated activation of the extracellular signal-regulated kinase mitogen-activated protein kinase cascade. Oeckler, R.A., Kaminski, P.M., Wolin, M.S. Circ. Res. (2003) [Pubmed]
  25. Ras induction of superoxide activates ERK-dependent angiogenic transcription factor HIF-1alpha and VEGF-A expression in shock wave-stimulated osteoblasts. Wang, F.S., Wang, C.J., Chen, Y.J., Chang, P.R., Huang, Y.T., Sun, Y.C., Huang, H.C., Yang, Y.J., Yang, K.D. J. Biol. Chem. (2004) [Pubmed]
  26. Detection of superoxide and NADPH oxidase in porcine articular chondrocytes. Hiran, T.S., Moulton, P.J., Hancock, J.T. Free Radic. Biol. Med. (1997) [Pubmed]
  27. Inhibition of membrane-bound methane monooxygenase and ammonia monooxygenase by diphenyliodonium: implications for electron transfer. Shiemke, A.K., Arp, D.J., Sayavedra-Soto, L.A. J. Bacteriol. (2004) [Pubmed]
  28. Purification and characterization of an NADPH-cytochrome P450 (cytochrome c) reductase from spearmint (Mentha spicata) glandular trichomes. Ponnamperuma, K., Croteau, R. Arch. Biochem. Biophys. (1996) [Pubmed]
  29. Photoinduced chain reactions of alcohols in the presence of diphenyliodonium ion pairs with cyanometallates--steady state UV/visible spectroscopic and pulse radiolysis studies. Hennig, H., Brede, O., Billing, R., Schönewerk, J. Chemistry (Weinheim an der Bergstrasse, Germany) (2001) [Pubmed]
 
WikiGenes - Universities