The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Homology modeling of human sialidase enzymes NEU1, NEU3 and NEU4 based on the crystal structure of NEU2: Hints for the design of selective NEU3 inhibitors.

Four types of human sialidases have been cloned and characterized at the molecular level. They are classified according to their major intracellular location as intralysomal (NEU1), cytosolic (NEU2), plasma membrane (NEU3) and lysosomal or mitochondrial membrane (NEU4) associated sialidases. These human isoforms are distinct from each other in their enzymatic properties as well as their substrate specificity. Altered expression of sialidases has been correlated with malignant transformation of cells and different sialidases have been known to behave differently during carcinogenesis. Particularly, increased expression of NEU3 has been implicated in the survival of various cancer cells and also in the development of insulin resistance. In the present study, we have modeled three-dimensional structures of NEU1, NEU3 and NEU4 based on the crystal structure of NEU2 using the homology modeling program MODELER. The best model in each enzyme case was chosen on the basis of various standard protein analysis programs. Predicted structures and the experimental protein-ligand complex of NEU2 were compared to identify similarities and differences among the active sites. The molecular electrostatic potential (MEP) was calculated for the predicted models to identify the differences in charge distribution around the active site and its vicinity. The primary objective of the present work is to identify the structural differences between the different isoforms of human sialidases, namely NEU1, NEU2, NEU3 and NEU4, thus providing a better insight into the differences in the active sites of these enzymes. This can in turn guide us in the better understanding and rationale of the differential substrate recognition and activity, thereby aiding in the structure-based design of selective NEU3 inhibitors.[1]

References

 
WikiGenes - Universities