The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Prostaglandin-H-synthase (PGHS)-1 and -2 microtiter assays for the testing of herbal drugs and in vitro inhibition of PGHS-isoenzyms by polyunsaturated fatty acids from Platycodi radix.

In order to test inhibition of prostaglandin-H-synthase-1 and -2 (PGHS-1 and -2) by plant extracts, we have established two enzyme based in vitro assays with enzyme immunoassay (EIA) evaluation. The assays have been evaluated with known synthetic inhibitors and with plant extracts. In a screening of traditionally used Chinese herbs for anti-inflammatory activity, a series of n-hexane and dichloromethane extracts showed significant inhibitory effect in comparison with the known specific PGHS-2 inhibitors NS-398 (IC(50) = 2.6 microM) and nimesulide (IC(50) = 36 microM). The lipophilic extracts of the Chinese drug Jiengeng, the dried roots of Platycodon grandiflorum (Jacq.) A. DC. (Campanulaceae), showed good inhibitory activity against both PGHS isoenzymes. The directly prepared DCM-extract exhibited better activity against PGHS-2 (IC(50) = 4.0 microg/ml) than against PGHS-1 (IC(50) = 17.6 microg/ml). We identified fatty acids as main active constituents and quantified them. Linoleic acid showed the highest content (ca. 20% of the dried extract) and a high and preferential PGHS-2 inhibitory activity (IC(50) (PGHS-1) = 20 microM; IC(50) (PGHS-2) = 2 microM). The comparison of the concentration of linoleic acid and the inhibitory activity of the direct DCM-extract showed, that linoleic acid is mainly responsible for the in vitro activity of the extract on PGHS-2.[1]


WikiGenes - Universities