Par-1 kinase establishes cell polarity and functions in Notch signaling in the Drosophila embryo.
The Drosophila protein kinase Par-1 is expressed throughout Drosophila development, but its function has not been extensively characterized because of oocyte lethality of null mutants. In this report, we have characterized the function of Par-1 in embryonic and post-embryonic epithelia. Par-1 protein is dynamically localized during embryonic cell polarization, transiently restricted to the lateral membrane domain, followed by apicolateral localization. We depleted maternal and zygotic par-1 by RNAi and revealed a requirement for Par-1 in establishing cell polarity. Par-1 restricts the coalescing adherens junction to an apicolateral position and prevents its widespread formation along the lateral domain. Par-1 also promotes the localization of lateral membrane proteins such as Delta. These activities are important for the further development of cell polarity during gastrulation. By contrast, Par-1 is not essential to maintain epithelial polarity once it has been established. However, it still has a maintenance role since overexpression causes severe polarity disruption. Additionally, we find a novel role for Par-1 in Notch signal transduction during embryonic neurogenesis and retina determination. Epistasis analysis indicates that Par-1 functions upstream of Notch and is critical for proper localization of the Notch ligand Delta.[1]References
- Par-1 kinase establishes cell polarity and functions in Notch signaling in the Drosophila embryo. Bayraktar, J., Zygmunt, D., Carthew, R.W. J. Cell. Sci. (2006) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg