Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia.
Episodic ataxia type-2 (EA2) is caused by mutations in P/Q-type voltage-gated calcium channels that are expressed at high densities in cerebellar Purkinje cells. Because P/Q channels support neurotransmitter release at many synapses, it is believed that ataxia is caused by impaired synaptic transmission. Here we show that in ataxic P/Q channel mutant mice, the precision of Purkinje cell pacemaking is lost such that there is a significant degradation of the synaptic information encoded in their activity. The irregular pacemaking is caused by reduced activation of calcium-activated potassium (K(Ca)) channels and was reversed by pharmacologically increasing their activity with 1-ethyl-2-benzimidazolinone (EBIO). Moreover, chronic in vivo perfusion of EBIO into the cerebellum of ataxic mice significantly improved motor performance. Our data support the hypothesis that the precision of intrinsic pacemaking in Purkinje cells is essential for motor coordination and suggest that K(Ca) channels may constitute a potential therapeutic target in EA2.[1]References
- Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Walter, J.T., Alviña, K., Womack, M.D., Chevez, C., Khodakhah, K. Nat. Neurosci. (2006) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg