The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

D-Amphetamine stimulates D(2) dopamine receptor-mediated brain signaling involving arachidonic acid in unanesthetized rats.

In rat brain, dopaminergic D(2)-like but not D(1)-like receptors can be coupled to phospholipase A(2) (PLA(2)) activation, to release the second messenger, arachidonic acid (AA, 20:4n-6), from membrane phospholipids. In this study, we hypothesized that D-amphetamine, a dopamine-releasing agent, could initiate such AA signaling. The incorporation coefficient, k* (brain radioactivity/integrated plasma radioactivity) for AA, a marker of the signal, was determined in 62 brain regions of unanesthetized rats that were administered i.p. saline, D-amphetamine (2.5 or 0.5 mg/kg i.p.), or the D(2)-like receptor antagonist raclopride (6 mg/kg, i.v.) before saline or 2.5 mg/kg D-amphetamine. After injecting [1-(14)C]AA intravenously, k* was measured by quantitative autoradiography. Compared to saline-treated controls, D-amphetamine 2.5 mg/kg i.p. increased k* significantly in 27 brain areas rich in D(2)-like receptors. Significant increases were evident in neocortical, extrapyramidal, and limbic regions. Pretreatment with raclopride blocked the increments, but raclopride alone did not alter baseline values of k*. In independent experiments, D-amphetamine 0.5 mg/kg i.p. increased k* significantly in only seven regions, including the nucleus accumbens and layer IV neocortical regions. These results indicate that D-amphetamine can indirectly activate brain PLA(2) in the unanesthetized rat, and that activation is initiated entirely at D(2)-like receptors. D-Amphetamine's low-dose effects are consistent with other evidence that the nucleus accumbens, considered a reward center, is particularly sensitive to the drug.Journal of Cerebral Blood Flow & Metabolism (2006) 26, 1378-1388. doi:10.1038/sj.jcbfm.9600290; published online 1 March 2006.[1]


  1. D-Amphetamine stimulates D(2) dopamine receptor-mediated brain signaling involving arachidonic acid in unanesthetized rats. Bhattacharjee, A.K., Chang, L., White, L., Bazinet, R.P., Rapoport, S.I. J. Cereb. Blood Flow Metab. (2006) [Pubmed]
WikiGenes - Universities