The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Synthetic Smac peptide enhances the effect of etoposide-induced apoptosis in human glioblastoma cell lines.

Smac/DIABLO is a mitochondrial protein released into cytosol during the progression of apoptosis. Smac/DIABLO promotes apoptosis by neutralizing the inhibitory effect of the inhibitor of apoptosis proteins (IAPs) on the processing and activity of the effecter of caspase. Here, we generated synthetic Smac peptide which possesses an IAP-binding domain and Drosophila antennapaedia penetration sequence, and examined whether it enhances the effect of the chemotherapeutic agent etoposide in the human glioblastoma cell line. Cellular uptake of Smac peptide in several glioma cell lines was most prominent at 6-12 h after addition. Caspase activity assay showed that our peptide successfully increased the activity of caspase-3 and caspase-9 in etoposide-induced apoptosis. In addition, Smac peptide increased the amount of cleaved PARP (poly ADP-ribose polymerase), but control peptides did not. Moreover, the addition of z-VAD-fmk, a caspase inhibitor, counterbalanced the effect of Smac peptide. Finally, we demonstrated that Smac peptide could enhance the growth inhibition effect of etoposide compared with control peptides. These results suggest that synthetic Smac peptide may be a new molecular targeting anti-tumor therapy for human glioblastoma.[1]


  1. Synthetic Smac peptide enhances the effect of etoposide-induced apoptosis in human glioblastoma cell lines. Mizukawa, K., Kawamura, A., Sasayama, T., Tanaka, K., Kamei, M., Sasaki, M., Kohmura, E. J. Neurooncol. (2006) [Pubmed]
WikiGenes - Universities