The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Dcp-1  -  Death caspase-1

Drosophila melanogaster

Synonyms: CG5370, Caspase-1, DCP-1, DCP1, Dcp1, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Dcp-1

  • Loss of function for the dcp-1 gene, which encodes a caspase, caused female sterility by inhibiting this transfer. dcp-1- nurse cells were defective in the cytoskeletal reorganization and nuclear breakdown that normally accompany this process [1].
  • Caspases are implicated in the execution of apoptosis in Drosophila melanogaster by the observation that expression of baculovirus p35, a caspase inhibitor, blocks cell death in vivo in Drosophila [2].
  • Recombinant DAMM produced in Escherichia coli shows significant catalytic activity on a pentapeptide caspase substrate [3].
  • Independent of caspase activation, Bunyavirus NSs proteins also share with Reaper the ability to directly inhibit cellular protein translation [4].
  • These results demonstrate the neuroprotective effect of PTD-XIAP fusion protein against brain injury possibly through the inhibition of caspase [5].

High impact information on Dcp-1

  • Drosophila IAP1 (DIAP1) is an endogenous caspase inhibitor that is crucial for regulating cell death during development [6].
  • Caspase activation has been extensively studied in the context of apoptosis [6].
  • Mutations affecting the Dark protein, an activator of the upstream caspase Dronc, also rescued RacN17 migration defects [7].
  • A role for Drosophila IAP1-mediated caspase inhibition in Rac-dependent cell migration [7].
  • Here we show that HID blocks DIAP1's ability to inhibit caspase activity and provide evidence suggesting that RPR and GRIM can act similarly [8].

Biological context of Dcp-1


Anatomical context of Dcp-1


Associations of Dcp-1 with chemical compounds


Physical interactions of Dcp-1


Enzymatic interactions of Dcp-1


Regulatory relationships of Dcp-1

  • Because loss of DIAP1 is sufficient to promote caspase activation, these mechanisms should promote apoptosis [23].
  • Conversely, we demonstrate that overexpression of Dnr1 blocks apoptotic caspase activity and prevents induction of apoptosis in tissue culture assays [24].
  • Skl interacts with Drosophila and mammalian IAPs and can promote caspase activation in the presence of IAPs [25].
  • In contrast to previous reports, we show that the dronc eye ablation phenotype can be suppressed by coexpression of the baculoviral caspase inhibitor p35 [26].
  • The Drosophila nuclear factor-kappaB (NF-kappaB)-like transcription factor Relish is activated by an endoproteolytic cleavage step mediated by the Drosophila caspase Dredd [27].

Other interactions of Dcp-1


Analytical, diagnostic and therapeutic context of Dcp-1

  • The role of cytochrome c (Cyt c) in caspase activation has largely been established from mammalian cell-culture studies, but much remains to be learned about its physiological relevance in situ [32].
  • Sequence analysis revealed that human CLARP contains two amino-terminal death effector domains fused to a carboxyl-terminal caspase-like domain [33].
  • Immunoprecipitation analysis showed that both CED-4 and CED-4 (K165R) bind directly to Drosophila caspase drICE, and the overexpression of CED-4 (K165R) inhibits CED-4-, ecdysone-, or cycloheximide-dependent caspase activation in S2 cells [34].


  1. Requirement for DCP-1 caspase during Drosophila oogenesis. McCall, K., Steller, H. Science (1998) [Pubmed]
  2. Identification of a Drosophila melanogaster ICE/CED-3-related protease, drICE. Fraser, A.G., Evan, G.I. EMBO J. (1997) [Pubmed]
  3. Characterization of the Drosophila caspase, DAMM. Harvey, N.L., Daish, T., Mills, K., Dorstyn, L., Quinn, L.M., Read, S.H., Richardson, H., Kumar, S. J. Biol. Chem. (2001) [Pubmed]
  4. Inhibition of translation and induction of apoptosis by Bunyaviral nonstructural proteins bearing sequence similarity to reaper. Colón-Ramos, D.A., Irusta, P.M., Gan, E.C., Olson, M.R., Song, J., Morimoto, R.I., Elliott, R.M., Lombard, M., Hollingsworth, R., Hardwick, J.M., Smith, G.K., Kornbluth, S. Mol. Biol. Cell (2003) [Pubmed]
  5. In vivo delivery of a XIAP (BIR3-RING) fusion protein containing the protein transduction domain protects against neuronal death induced by seizures. Li, T., Fan, Y., Luo, Y., Xiao, B., Lu, C. Exp. Neurol. (2006) [Pubmed]
  6. Drosophila IKK-related kinase regulates nonapoptotic function of caspases via degradation of IAPs. Kuranaga, E., Kanuka, H., Tonoki, A., Takemoto, K., Tomioka, T., Kobayashi, M., Hayashi, S., Miura, M. Cell (2006) [Pubmed]
  7. A role for Drosophila IAP1-mediated caspase inhibition in Rac-dependent cell migration. Geisbrecht, E.R., Montell, D.J. Cell (2004) [Pubmed]
  8. The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Wang, S.L., Hawkins, C.J., Yoo, S.J., Müller, H.A., Hay, B.A. Cell (1999) [Pubmed]
  9. Stage-specific regulation of caspase activity in drosophila oogenesis. Peterson, J.S., Barkett, M., McCall, K. Dev. Biol. (2003) [Pubmed]
  10. Degradation of DIAP1 by the N-end rule pathway is essential for regulating apoptosis. Ditzel, M., Wilson, R., Tenev, T., Zachariou, A., Paul, A., Deas, E., Meier, P. Nat. Cell Biol. (2003) [Pubmed]
  11. Biochemical and genetic interactions between Drosophila caspases and the proapoptotic genes rpr, hid, and grim. Song, Z., Guan, B., Bergman, A., Nicholson, D.W., Thornberry, N.A., Peterson, E.P., Steller, H. Mol. Cell. Biol. (2000) [Pubmed]
  12. The Drosophila caspase Ice is important for many apoptotic cell deaths and for spermatid individualization, a nonapoptotic process. Muro, I., Berry, D.L., Huh, J.R., Chen, C.H., Huang, H., Yoo, S.J., Guo, M., Baehrecke, E.H., Hay, B.A. Development (2006) [Pubmed]
  13. Lack of involvement of mitochondrial factors in caspase activation in a Drosophila cell-free system. Means, J.C., Muro, I., Clem, R.J. Cell Death Differ. (2006) [Pubmed]
  14. Identification of E2/E3 ubiquitinating enzymes and caspase activity regulating Drosophila sensory neuron dendrite pruning. Kuo, C.T., Zhu, S., Younger, S., Jan, L.Y., Jan, Y.N. Neuron (2006) [Pubmed]
  15. The two Drosophila cytochrome C proteins can function in both respiration and caspase activation. Arama, E., Bader, M., Srivastava, M., Bergmann, A., Steller, H. EMBO J. (2006) [Pubmed]
  16. The Drosophila DIAP1 protein is required to prevent accumulation of a continuously generated, processed form of the apical caspase DRONC. Muro, I., Hay, B.A., Clem, R.J. J. Biol. Chem. (2002) [Pubmed]
  17. Activation of distinct caspase-like proteases by Fas and reaper in Drosophila cells. Kondo, T., Yokokura, T., Nagata, S. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  18. Ceramide generation by the Reaper protein is not blocked by the caspase inhibitor, p35. Bose, R., Chen, P., Loconti, A., Grüllich, C., Abrams, J.M., Kolesnick, R.N. J. Biol. Chem. (1998) [Pubmed]
  19. Reaper is regulated by IAP-mediated ubiquitination. Olson, M.R., Holley, C.L., Yoo, S.J., Huh, J.R., Hay, B.A., Kornbluth, S. J. Biol. Chem. (2003) [Pubmed]
  20. The Drosophila caspase DRONC cleaves following glutamate or aspartate and is regulated by DIAP1, HID, and GRIM. Hawkins, C.J., Yoo, S.J., Peterson, E.P., Wang, S.L., Vernooy, S.Y., Hay, B.A. J. Biol. Chem. (2000) [Pubmed]
  21. Ecdysone receptor directly binds the promoter of the Drosophila caspase dronc, regulating its expression in specific tissues. Cakouros, D., Daish, T.J., Kumar, S. J. Cell Biol. (2004) [Pubmed]
  22. Dissection of DIAP1 functional domains via a mutant replacement strategy. Yokokura, T., Dresnek, D., Huseinovic, N., Lisi, S., Abdelwahid, E., Bangs, P., White, K. J. Biol. Chem. (2004) [Pubmed]
  23. Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms. Yoo, S.J., Huh, J.R., Muro, I., Yu, H., Wang, L., Wang, S.L., Feldman, R.M., Clem, R.J., Müller, H.A., Hay, B.A. Nat. Cell Biol. (2002) [Pubmed]
  24. Interactions of DNR1 with the apoptotic machinery of Drosophila melanogaster. Primrose, D.A., Chaudhry, S., Johnson, A.G., Hrdlicka, A., Schindler, A., Tran, D., Foley, E. J. Cell. Sci. (2007) [Pubmed]
  25. sickle, a novel Drosophila death gene in the reaper/hid/grim region, encodes an IAP-inhibitory protein. Srinivasula, S.M., Datta, P., Kobayashi, M., Wu, J.W., Fujioka, M., Hegde, R., Zhang, Z., Mukattash, R., Fernandes-Alnemri, T., Shi, Y., Jaynes, J.B., Alnemri, E.S. Curr. Biol. (2002) [Pubmed]
  26. An essential role for the caspase dronc in developmentally programmed cell death in Drosophila. Quinn, L.M., Dorstyn, L., Mills, K., Colussi, P.A., Chen, P., Coombe, M., Abrams, J., Kumar, S., Richardson, H. J. Biol. Chem. (2000) [Pubmed]
  27. An evolutionary conserved pathway of nuclear factor-kappaB activation involving caspase-mediated cleavage and N-end rule pathway-mediated degradation of IkappaBalpha. Rathore, N., Matta, H., Chaudhary, P.M. J. Biol. Chem. (2004) [Pubmed]
  28. The effector caspases drICE and dcp-1 have partially overlapping functions in the apoptotic pathway in Drosophila. Xu, D., Wang, Y., Willecke, R., Chen, Z., Ding, T., Bergmann, A. Cell Death Differ. (2006) [Pubmed]
  29. Control of the cell death pathway by Dapaf-1, a Drosophila Apaf-1/CED-4-related caspase activator. Kanuka, H., Sawamoto, K., Inohara, N., Matsuno, K., Okano, H., Miura, M. Mol. Cell (1999) [Pubmed]
  30. Lobe and Serrate are required for cell survival during early eye development in Drosophila. Singh, A., Shi, X., Choi, K.W. Development (2006) [Pubmed]
  31. Compensatory proliferation in Drosophila imaginal discs requires Dronc-dependent p53 activity. Wells, B.S., Yoshida, E., Johnston, L.A. Curr. Biol. (2006) [Pubmed]
  32. Cytochrome c-d regulates developmental apoptosis in the Drosophila retina. Mendes, C.S., Arama, E., Brown, S., Scherr, H., Srivastava, M., Bergmann, A., Steller, H., Mollereau, B. EMBO Rep. (2006) [Pubmed]
  33. CLARP, a death effector domain-containing protein interacts with caspase-8 and regulates apoptosis. Inohara, N., Koseki, T., Hu, Y., Chen, S., Núñez, G. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  34. Proapoptotic activity of Caenorhabditis elegans CED-4 protein in Drosophila: implicated mechanisms for caspase activation. Kanuka, H., Hisahara, S., Sawamoto, K., Shoji, S., Okano, H., Miura, M. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
WikiGenes - Universities