The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Suppression on the mutagenicity of 4-nitroquinoline-N-oxide by the methanol extracts of soybean koji prepared with various filamentous fungi.

In this study, solid fermentation of soybean with various GRAS filamentous fungi including Aspergillus sojae BCRC 30103, Aspergillus oryzae BCRC 30222, Aspergillus awamori, Actinomucor taiwanesis and Rhizopus sp. was performed to prepare various soybean kojis. Toxicity, mutagenicity and suppression on the mutagenesis induced by a direct mutagen, 4-nitroquinoline-N-oxide (4-NQO) on Salmonella typhimurium TA 100, by the various methanol extracts of the prepared soybean koji and unfermented soybean were determined and compared. Results revealed that methanol extracts of unfermented soybean and kojis show no toxicity and mutagenic activity within the dose levels examined on test organism. On the other hand, antimutagenic activity against 4-NQO was observed with the extract of unfermented soybean. Furthermore, fermentation, regardless of the starter organism employed, resulted in an enhanced antimutagenic effect on the mutagenesis of 4-NQO by the extracts of the soybean koji. Across the dose range (0.625-5.0 mg/plate) tested, a dose-dependent antimutagenic activity was observed. Antimutagenic activities of the koji extracts varied with starter organism, with A. awamori-prepared koji extract exhibiting the highest rate of suppression on the mutagenicity of 4-NQO. Further study with A. awamori also revealed that fermentation temperature affected the antimutagenic activity of the prepared koji extract. In general, the extract of the A. awamori-soybean koji prepared at 30 degrees C showed a higher antimutagenic activity than those prepared at 25 or 35 degrees C.[1]


WikiGenes - Universities